0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

定义充放电离子输运通量概念在固态电池领域的重要作用

清新电源 来源:清新电源 2023-03-16 09:07 次阅读

研究背景

固态电解质的开发有望从源头上解决电池的安全问题,并进一步提高电池的能量密度。目前,多种固态电解质材料体系(聚合物、氧化物、硫化物、卤化物等)被开发报道,固态电解质的离子电导率、电化学稳定性、机械强度等性能得到提升。但是,在众多研究报道中固态电池性能的测试条件并不统一,难以客观全面地评估固态锂电池的性能和实际应用价值。因此,建立固态电池综合性能描述符和评价指标,对理解固态电池领域的发展现状和促进固态电池的产业化应用具有深远意义。

成果简介

近日,清华大学深圳国际研究生院贺艳兵教授团队提出了一个固态电池综合性能描述符——锂离子输运通量(61048ea8-c383-11ed-bfe3-dac502259ad0.png),该概念定义为单位时间内电池充放电反应通过电极/电解质界面单位面积的锂离子扩散物质的量。基于最新的研究进展,该论文运用此可量化的因子评价了液态锂电池、准固态锂电池以及固态锂电池的发展现状,并从三个方面重点分析讨论了提高固态锂电池中锂离子输运通量的策略:在多孔正极中构建“跨间隙”高效离子输运网络,在复合固态电解质中构建“跨物相”高效离子输运通道,在电解质与电极之间建立“跨界面”高效离子输运界面(图1)。该工作以 “Determiningthe Role of Ion Transport Throughput in Solid-State Lithium Batteries”为题发表在Angewandte Chemie上。

610a6562-c383-11ed-bfe3-dac502259ad0.png

图1. 固态锂电池高通量离子输运提升策略

图文导读

1)锂离子输运通量61048ea8-c383-11ed-bfe3-dac502259ad0.png计算公式如下所示,参数见表1。由公式可知,61048ea8-c383-11ed-bfe3-dac502259ad0.png不但取决于充放电时间(充放电倍率),而且与面容量成正比。此外,61048ea8-c383-11ed-bfe3-dac502259ad0.png作为一个可量化的因子将电池的极化、界面阻抗、界面副反应等因素考虑在内,能够更客观反映电池的实际电化学性能。

615221a4-c383-11ed-bfe3-dac502259ad0.png

表1. 锂离子输运通量计算所用参数及含义

符号 单位 含义
61048ea8-c383-11ed-bfe3-dac502259ad0.png mol m-2 h-1 锂离子输运通量
Carea mAh cm-2 实际面容量
CLi mAh g-1 (3860) 锂的理论比容量
MLi g mol-1 (6.941) 锂的摩尔质量
t h 充放电时间

2)基于最新的以及有代表性的研究报道,该评述论文考察了液态锂离子电池、液态锂金属电池、准固态锂电池、固态锂电池的61048ea8-c383-11ed-bfe3-dac502259ad0.png如图2所示。结果表明,和液态锂电池相比,绝大多数固态电池的面容量较低,且电池的充放电倍率较低(充放电时间较长),使得固态电池的61048ea8-c383-11ed-bfe3-dac502259ad0.png明显低于液态锂电池。究其原因,用固态电解质取代电解液会造成锂离子在整个电池构型中的离子输运效率和通量显著降低,具体体现在:j固态电解质不能充分浸润多孔正极,使得锂离子在正极内部的跨间隙输运受阻,降低了正极活性物质的利用率和容量发挥;k尽管设计复合固态电解质有利于增强离子电导率,但是电解质中不同物相之间存在较大的迁移势垒,阻碍了锂离子的跨物相输运,难以形成高效的离子输运通道;l固态电解质与电极的界面接触性和稳定性较差,产生了较大的界面阻抗,限制了离子的跨界面输运。因此,实现高性能固态电池的核心在于实现固相体系高通量高稳定锂离子输运,尤其需要构筑跨间隙、跨物相、跨界面的离子输运网络来提升离子输运通量。

6185b47e-c383-11ed-bfe3-dac502259ad0.png

图2. 液态、准固态和固态锂电池的

3)在复合固态电解质中构筑跨物相离子输运通道。复合固态电解质兼具无机固态电解质和聚合物固态电解质的优势,被认为是最具实用化前途的固态电解质之一。然而,无机相与聚合物相的不相容性造成锂离子的跨物相输运存在较大能垒,使得锂离子在高离子电导无机相中的传输受到限制,更倾向于在低离子电导的聚合物相中传输。因此,充分发挥聚合物相和无机相的协同作用至关重要。

首先,需要发展和运用先进的表征技术探究不同材料体系内部的离子输运机制,有利于揭示阻碍离子输运的瓶颈,常用的表征技术包括固体核磁共振(ssNMR)、中子衍射(NR)、原位电子能量损失谱(EELS)等。其次,需要构筑离子输运桥梁降低跨物相离子输运的能垒。目前的研究表明,无机相的形貌、尺寸和含量都会影响离子传输路径,惰性填料不能直接参与离子传输,但会通过降低结晶度、调控配位环境等加速聚合物相的离子传输;活性填料占比超过一半时以无机相传导为主。此外,使用离子液体、硅烷偶联剂等调控相界面的化学性质能够显著提升离子电导率(图3)。

61b31b1c-c383-11ed-bfe3-dac502259ad0.png

图3. 复合固态电解质中的跨物相离子输运策略

4)在固态正极中构筑跨间隙离子传输网络。根据计算公式,提高正极的面容量是提升61048ea8-c383-11ed-bfe3-dac502259ad0.png和电池能量密度的关键途径。然而,面容量的提高使得电极厚度增加,造成离子输运路径变长和电极迂曲度增大,降低活性物质利用率以及容量发挥。此外,正极内部的活性物质与电解质之间为“固-固”接触,进一步增大电荷转移阻抗。因此,对固态多孔正极进行结构和界面设计,有利于提高活性物质利用率和容量发挥。研究表明,通过模板法、溶液法、流延法、原位聚合等工艺设计三维定向离子输运网络能有效构筑高负载电极。

其中,降低电解质的尺寸、使用单晶活性物质更有利于形成均匀的输运网络。固态电解质与正极活性物质的界面相容性不容忽视,通过表面包覆能明显抑制界面副反应和空间电荷层,增强正极内部不同组分之间的界面稳定性(图4)。

61cf06ce-c383-11ed-bfe3-dac502259ad0.png

图4. 复合固态正极中的跨间隙离子输运策略

5)在固态电解质/电极之间构建跨界面离子输运界面。界面接触性差和界面不稳定是当前固态电池面临的最大挑战,严重限制了电池的高倍率运行和长循环寿命。对于不同电解质体系,正极/固态电解质主要存在电解质氧化分解(聚合物基)、接触性差(氧化物基)、空间电荷层(硫化物基)的问题,通过引用人工界面修饰层、表面包覆、调控电解质组分(如添加剂、锂盐)、多层结构设计能有效解决上述问题。对于锂金属负极/固态电解质界面,主要存在界面副反应、界面接触性差的问题,调控电解质的阴阳离子配位环境、设计原位反应、原位聚合是很有效的方法(图5)。总之,构筑兼具高稳定和高离子电导的功能界面是实现固态电池高通量离子输运的最关键环节。

61da1884-c383-11ed-bfe3-dac502259ad0.png

图5. 电极/电解质的跨界面离子输运策略

总结与展望

该综述论文首次提出了离子输运通量61048ea8-c383-11ed-bfe3-dac502259ad0.png概念,作为固态电池的综合性能描述符,其全面考虑了电池的面容量、充放电倍率、极化、界面阻抗和副反应等因素。基于最新的研究进展,该论文运用此描述符评价了液态锂电池、准固态锂电池以及固态锂电池的发展现状,并从三个方面重点分析讨论了提高固态锂电池中锂离子输运通量的策略:在多孔正极中构建跨间隙高效离子输运网络,在复合固态电解质中构建跨物相高效离子输运通道,在电解质与电极之间建立跨界面高效离子输运界面。

因此,实现高性能固态电池的核心在于实现固相体系高通量高稳定锂离子输运。该描述符有利于清晰了解固态电池的发展现状,推动固态电池的产业化应用。此外,离子输运通量作为可量化的因子也可用于评价钠、钾、锌和镁等多种离子电池电化学储能体系的实际性能。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 充放电
    +关注

    关注

    0

    文章

    164

    浏览量

    21796
  • 电解质
    +关注

    关注

    6

    文章

    803

    浏览量

    20014
  • 固态电池
    +关注

    关注

    9

    文章

    691

    浏览量

    27691
  • 固态电解质
    +关注

    关注

    0

    文章

    83

    浏览量

    5412
收藏 人收藏

    评论

    相关推荐

    固态电池的工作原理 固态电池在电动车的应用

    的工作原理 传统的锂离子电池使用液态电解质,这种电解质在电池内部流动,允许锂离子在正负极之间移动,从而完成充放电过程。然而,液态电解质存在一些局限性,如易燃性、泄漏风险以及在低温下的性
    的头像 发表于 10-28 09:14 397次阅读

    电源模块充放电测试的重要性和方法

    充放电测试是指通过模拟电池在实际使用过程中的充电和放电过程,检测电池的能量存储和释放能力,判断电池的工作时长、容量、电流输出能力等指标是否合
    的头像 发表于 09-12 18:21 464次阅读
    电源模块<b class='flag-5'>充放电</b>测试的<b class='flag-5'>重要</b>性和方法

    离子电池是什么?可以跟超级电容器混合嘛

    离子电池是一种利用钠离子在正负极之间传递来存储和释放能量的二次电池。与锂离子电池类似,钠离子
    的头像 发表于 06-30 08:16 436次阅读
    钠<b class='flag-5'>离子</b><b class='flag-5'>电池</b>是什么?可以跟超级电容器混合嘛

    电池充放电测试方法详解

    为了确保锂电池在实际使用中的性能和安全性,一个重要的环节就是对电池进行充放电测试。这些测试能够评估电池的容量、功率、稳定性及其长期的可靠性。
    的头像 发表于 06-13 09:21 2579次阅读
    锂<b class='flag-5'>电池</b><b class='flag-5'>充放电</b>测试方法详解

    电池模拟器模拟测试电池充放电性能

    电池模拟器是一种强大的工具,能够在模拟真实电池的输出状态和充放电特性方面发挥重要作用。它可以准确地模拟电池
    的头像 发表于 06-11 16:05 781次阅读
    <b class='flag-5'>电池</b>模拟器模拟测试<b class='flag-5'>电池</b><b class='flag-5'>充放电</b>性能

    电池充放电测试仪:电力与通信行业的关键保障|比斯特自动化

    随着科技的不断进步和电力、通信行业的迅猛发展,蓄电池作为储能设备在这些领域的应用愈发广泛。而为了确保蓄电池的性能稳定、可靠,一款高效的蓄电池充放电
    的头像 发表于 06-06 10:14 353次阅读
    蓄<b class='flag-5'>电池</b><b class='flag-5'>充放电</b>测试仪:电力与通信行业的关键保障|比斯特自动化

    电池模拟器充放电测试介绍

    电是我们生活中最方便的能源,我们无时无刻不在使用它。如今,我们能够随时随地获得电力,而这些便利都离不开可充电的锂离子电池。 经过多年的技术革新,锂电池的综合性能不断提高,并在多个领域得到应用。然而
    的头像 发表于 05-17 17:39 666次阅读
    <b class='flag-5'>电池</b>模拟器<b class='flag-5'>充放电</b>测试介绍

    bms怎么区分充放电mos

    bms怎么区分充放电mos  BMS(电池管理系统)是控制和监测电池重要组成部分,其中包括充放电MOS(金属氧化物半导体),用于控制
    的头像 发表于 03-27 15:33 3294次阅读

    储能电池充放电过程温度变化研究

    储能锂电池系统在船舶和港口区域的应用和推广是交通水运领域减碳降排的重要措施。锂电池的工作特性决定了热管理在储能系统的重要性,而锂
    的头像 发表于 03-27 08:09 1390次阅读
    储能<b class='flag-5'>电池</b><b class='flag-5'>充放电</b>过程温度变化研究

    UPS系统原理、蓄电池充放电试验及维护手册

    UPS系统原理、蓄电池充放电试验及维护手册
    的头像 发表于 02-25 15:39 1391次阅读
    UPS系统原理、蓄<b class='flag-5'>电池</b><b class='flag-5'>充放电</b>试验及维护手册

    充放电电流对锂电池性能有何影响?

    充放电电流对锂电池性能有何影响? 随着移动设备和电动交通工具的快速发展,锂电池已经成为一种非常重要的能量存储技术。在使用锂电池的过程中,
    的头像 发表于 01-23 14:58 1759次阅读

    电池包无保护板充放电有什么影响?

    电池包无保护板充放电有什么影响? 锂离子电池是目前最常见的可充电电池之一,具有高能量密度、轻量化、无记忆效应等优点,被广泛应用于移动设备、电动工具、电动汽车等
    的头像 发表于 01-11 14:09 2987次阅读

    防静电离子风扇的特点及应用

    防静电离子风扇是一种专门用于消除静电、防止静电污染及破坏的风扇。它通过高压电场产生离子,利用离子和灰尘的电性吸引,将灰尘颗粒吸附在风扇叶片上,从而达到高效除尘的效果。同时,防静电离子
    的头像 发表于 12-22 17:12 1087次阅读
    防静<b class='flag-5'>电离子</b>风扇的特点及应用

    离子电池的缺点和解决方案

    离子电池是目前广泛应用于电子产品、电动工具、电动车辆等领域重要能量储存技术,但它也存在一些缺点。本文将详细介绍锂离子电池的缺点,并提出相应的解决方案。 首先,锂
    的头像 发表于 12-20 17:01 2093次阅读

    充电电池充放电电路怎么接

    充电电池充放电电路是一种用于电池的充电和放电的电路。它包括了一系列的元件和连接方式,用来控制电流和电压的流动,确保电池能够在安全和有效的条件
    的头像 发表于 12-15 13:45 2999次阅读