0 引子
GAN的风暴席卷了整个深度学习圈子,任何任务似乎套上GAN的壳子,立马就变得高大上了起来。那么,GAN究竟是什么呢?
GAN的主要应用目标:
生成式任务(生成、重建、超分辨率、风格迁移、补全、上采样等)
GAN的核心思想: 生成器G和判别器D的一代代博弈
生成器: 生成网络,通过输入生成图像
判别器: 二分类网络,将生成器生成图像作为负样本,真实图像作为正样本
learn 判别器D:
给定G,通过G生成图像产生负样本,并结合真实图像作为正样本来训练D
learn 生成器G:
给定D,以使得D对G生成图像的评分尽可能接近正样本作为目标来训练G
G和D的训练过程交替进行,这个对抗的过程使得G生成的图像越来越逼真,D“打假”的能力也越来越强。
觉得不是很好理解嘛?别着急,慢慢往下看!
1 从极大似然估计说起
补充:
分布的表示:P(x)
表示该分布中采样到样本x的概率,试想如果我们知道该分布中每个样本的采样概率,那么这个分布也就可以以这种形式表示出来了。
确定分布的表示:P(x;
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
GaN
+关注
关注
19文章
1918浏览量
72974 -
生成器
+关注
关注
7文章
313浏览量
20976 -
深度学习
+关注
关注
73文章
5492浏览量
120975
发布评论请先 登录
相关推荐
你知道XGBoost背后的数学原理是什么吗?
在第一种方法的基础上,每走过特定数量的台阶,都由韩梅梅去计算每一个台阶的损失函数值,并从中找出局部最小值,以免错过全局最小值。每次韩梅梅找到局部最小值,她就发个信号,这样李雷就永远不会走错路了。但这种方法对女孩子不公平,可怜的韩梅梅需要探索她附近的所有点并计算所有这些点的函数值。
基于GaN的开关器件
和电机控制中。他们的接受度和可信度正在逐渐提高。(请注意,基于GaN的射频功放或功放也取得了很大的成功,但与GaN器件具有不同的应用场合,超出了本文的范围。)本文探讨了GaN器件的潜力
发表于 06-21 08:27
如何精确高效的完成GaN PA中的I-V曲线设计?
GaN PA 设计?)后,了解I-V 曲线(亦称为电流-电压特性曲线)是一个很好的起点。本篇文章探讨I-V 曲线的重要性,及其在非线性GaN 模型(如Modelithics Qorvo GaN
发表于 07-31 06:44
计算机代数系统数学原理
本文主要讨论计算机代数系统的数学原理,由十六个章节组成。内容包含高精度运算,数论,数学常数,精确线性代数,多项式,方程求解,符号求和,符号积分,微分方程符号解等九大部分,涵盖了构建计算机代数系统的最基础也是最重要的内容。许多内容是第一次被系统地整理出现在中文文献中,一些领
发表于 03-24 14:18
•31次下载
图解:卷积神经网络数学原理解析
图解:卷积神经网络数学原理解析 源自:数学中国 过去我们已经知道被称为紧密连接的神经网络。这些网络的神经元被分成若干组,形成连续的层。每一个这样的神经元都与相邻层的每一个神经元相连。下图显示了这种
探讨GAN背后的数学原理(下)
GAN的风暴席卷了整个深度学习圈子,任何任务似乎套上GAN的壳子,立马就变得高大上了起来。那么,GAN究竟是什么呢?
**GAN的主要应用目标:**
生成式任务(生成、重建
背后的数学原理在应用中得到验证
IEC 61508 和 ISO 26262 都提供“经过验证的使用”作为声明合规性的替代途径。在 IEC 61508 中,经使用验证的术语称为路由 2S.更常见的路线 1S表示该项目的开发符合标准的所有适用要求。路线 2S当该项目的开发不符合IEC 61508时,可以使用,但有很多操作经验可以表明其安全性。
傅里叶变换的数学原理
傅里叶变换的数学原理主要基于一种将函数分解为正弦和余弦函数(或复指数函数)的线性组合的思想。以下是对傅里叶变换数学原理的介绍: 一、基本原理 傅里叶级数 :对于周期性连续信号,可以将其表示为傅里叶
评论