电子发烧友网报道(文/梁浩斌)SiC MOSFET的发展历史其实相当长远,全球SiC产业龙头Wolfspeed的前身Cree公司,其创始人之一John Palmour在1987年申请了一项涉及在SiC衬底上生成MOS电容器的结构,这项专利后来被视为促成SiC MOSFET诞生的关键。
不过,由于衬底良率、制造工艺等问题,直到2011年SiC MOSFET才正式实现商业化,彼时的Cree推出了市场上第一款SiC MOSFET,采用平面栅结构的CMF20120D。到了2015年,罗姆率先实现沟槽栅结构SiC MOSFET的量产,这种结构更能够发挥SiC材料的特性,工艺更复杂。经过10多年的发展,目前在SiC MOSFET的技术路线上,沟槽栅已经被认为是更有优势的方向。
平面栅和沟槽栅有哪些区别?
平面栅结构 图源:基本半导体
从结构上看,最明显的特征是,平面结构的SiC MOSFET是指栅极电极和源极电极在同一水平面上,也就是呈现“平面”分布,沟道与衬底平行。平面栅工艺相对简单,容易实现较好的栅氧化层质量,有较强的抗电压冲击能力,实际应用中可靠性更高,在过载工况下也不容易被损坏。
不过相对地,对于MOSFET而言,器件导通能力取决于元胞间距,元胞间距越小、密度越高,导通电阻以及开关损耗就越低,同时还能提高器件的耐压能力,降低器件尺寸,提升功率密度。但平面栅由于栅极是横向,所以一定程度上限制了元胞间距的缩小,为了进一步缩小元胞间距,沟槽栅结构取代平面栅就成了目前的功率芯片厂商的产品趋势。
沟槽栅结构 图源:基本半导体
沟槽栅结构是指栅极电极位于源极电极下方,在半导体材料中形成一个“沟槽”。同时也能从上图中看到,沟槽栅结构中的沟道和栅极是垂直于衬底的,这也是与平面栅结构的一个显著区别,正因为这样的结构,可以让功率芯片的元胞间距大幅缩小,在性能上展现出比平面栅SiC MOSFET更低的导通电阻、更强的开关性能、更低的导通损耗等。
但沟槽栅也不是完全没有缺点。结构上沟槽栅SiC MOSFET需要在基板上挖出沟槽,将栅极埋入形成垂直沟道,工艺显然相比平面栅更复杂,良率、单元一致性都较差。同时,沟槽栅SiC MOSFET中的二氧化硅栅极所承受的电场强度比在硅基IGBT/MOSFET中高很多,因此栅极氧化层的可靠性会存在一些问题。当然,这些问题可以通过改进栅极氧化工艺等方式解决,或是通过不同的结构设计改善栅极底部电场集中的问题。
沟槽栅SiC MOSFET发展现状
罗姆作为最早量产SiC MOSFET的厂商,在2010年率先量产平面栅SiC MOSFET之后,在2015年的第三代产品上又再一次夺得先机,率先量产双沟槽结构的第三代产品。正如上文的沟槽栅结构示意图中一样,SiC MOSFET一般是单沟槽结构,即只有栅极沟槽;罗姆开发出的双沟槽MOSFET即同时具有源极沟槽和栅极沟槽。
前文我们也提到,为了充分利用SiC材料的高击穿能力,需要改善栅极氧化物处电场集中的问题。罗姆在官方介绍中表示,SiC MOSFET通过采用双沟槽的结构,在测试中可以实现比罗姆第二代平面栅SiC MOSFET降低约50%的导通电阻,同时输入电容降低35%,提升了开关性能。
罗姆2021年推出最新的第四代SiC MOSFET,进一步改进了双沟槽结构,成功在改善短路耐受时间的前提下,使导通电阻比第三代产品又降低约40%;同时通过大幅降低栅漏电容,成功地使开关损耗比以第三代产品降低约50%。按照其产品路线图,预计2025年和2028年推出的第五代和第六代产品的导通电阻将会分别再降低30%。
英飞凌的SiC MOSFET采用了不对称的半包沟槽结构,与罗姆几乎是目前业界唯二量产上车的SiC MOSFET沟槽设计。这种不对称的半包沟槽结构能够在独特的晶面上形成沟道,并可以使用较厚的栅极氧化层,实现很低的导通电阻,并提高了可靠性。英飞凌在2016年推出了第一代CoolSiC系列SiC MOSFET,并在2022年更新了第二代产品,相比第一代增强了25%-30%的载电流能力。
目前量产沟槽型SiC MOSFET的国际厂商还包括富士、三菱电机、住友电工、日本电装等,还有更多比如ST、博世、安森美等厂商,都有相关布局,ST计划在2025年推出其首款沟槽型SiC MOSFET产品。从国际厂商的布局来看,沟槽栅SiC MOSFET会是未来更具竞争力的方案。
国内方面,安海半导体、芯塔电子、芯长征科技、中车时代等都已经有相关的专利技术等布局,目前沟槽栅SiC MOSFET的专利竞争较大,特别是日系厂商比如电装、罗姆、富士电机等较为强势。国内厂商入局相对较晚,但相对布局较前的厂商可能会拥有更大的发挥空间。
小结:
总而言之,提高SiC MOSFET性能的几个重要指标,包括更小的元胞间距、更低的导通电阻、更低的开关损耗、更高的可靠性(栅极氧化保护),几乎都指向了沟槽栅结构。从2015年第一款量产沟槽栅SiC MOSFET产品推出到现在过去了8年时间,但市面上能够推出量产产品的厂商并不算多,在目前整体SiC市场持续高速增长的时期,提前布局合适的技术路线,才有机会在未来新的应用市场上占得先机。
不过,由于衬底良率、制造工艺等问题,直到2011年SiC MOSFET才正式实现商业化,彼时的Cree推出了市场上第一款SiC MOSFET,采用平面栅结构的CMF20120D。到了2015年,罗姆率先实现沟槽栅结构SiC MOSFET的量产,这种结构更能够发挥SiC材料的特性,工艺更复杂。经过10多年的发展,目前在SiC MOSFET的技术路线上,沟槽栅已经被认为是更有优势的方向。
平面栅和沟槽栅有哪些区别?
平面栅结构 图源:基本半导体
从结构上看,最明显的特征是,平面结构的SiC MOSFET是指栅极电极和源极电极在同一水平面上,也就是呈现“平面”分布,沟道与衬底平行。平面栅工艺相对简单,容易实现较好的栅氧化层质量,有较强的抗电压冲击能力,实际应用中可靠性更高,在过载工况下也不容易被损坏。
不过相对地,对于MOSFET而言,器件导通能力取决于元胞间距,元胞间距越小、密度越高,导通电阻以及开关损耗就越低,同时还能提高器件的耐压能力,降低器件尺寸,提升功率密度。但平面栅由于栅极是横向,所以一定程度上限制了元胞间距的缩小,为了进一步缩小元胞间距,沟槽栅结构取代平面栅就成了目前的功率芯片厂商的产品趋势。
沟槽栅结构 图源:基本半导体
沟槽栅结构是指栅极电极位于源极电极下方,在半导体材料中形成一个“沟槽”。同时也能从上图中看到,沟槽栅结构中的沟道和栅极是垂直于衬底的,这也是与平面栅结构的一个显著区别,正因为这样的结构,可以让功率芯片的元胞间距大幅缩小,在性能上展现出比平面栅SiC MOSFET更低的导通电阻、更强的开关性能、更低的导通损耗等。
但沟槽栅也不是完全没有缺点。结构上沟槽栅SiC MOSFET需要在基板上挖出沟槽,将栅极埋入形成垂直沟道,工艺显然相比平面栅更复杂,良率、单元一致性都较差。同时,沟槽栅SiC MOSFET中的二氧化硅栅极所承受的电场强度比在硅基IGBT/MOSFET中高很多,因此栅极氧化层的可靠性会存在一些问题。当然,这些问题可以通过改进栅极氧化工艺等方式解决,或是通过不同的结构设计改善栅极底部电场集中的问题。
沟槽栅SiC MOSFET发展现状
罗姆作为最早量产SiC MOSFET的厂商,在2010年率先量产平面栅SiC MOSFET之后,在2015年的第三代产品上又再一次夺得先机,率先量产双沟槽结构的第三代产品。正如上文的沟槽栅结构示意图中一样,SiC MOSFET一般是单沟槽结构,即只有栅极沟槽;罗姆开发出的双沟槽MOSFET即同时具有源极沟槽和栅极沟槽。
前文我们也提到,为了充分利用SiC材料的高击穿能力,需要改善栅极氧化物处电场集中的问题。罗姆在官方介绍中表示,SiC MOSFET通过采用双沟槽的结构,在测试中可以实现比罗姆第二代平面栅SiC MOSFET降低约50%的导通电阻,同时输入电容降低35%,提升了开关性能。
罗姆2021年推出最新的第四代SiC MOSFET,进一步改进了双沟槽结构,成功在改善短路耐受时间的前提下,使导通电阻比第三代产品又降低约40%;同时通过大幅降低栅漏电容,成功地使开关损耗比以第三代产品降低约50%。按照其产品路线图,预计2025年和2028年推出的第五代和第六代产品的导通电阻将会分别再降低30%。
英飞凌的SiC MOSFET采用了不对称的半包沟槽结构,与罗姆几乎是目前业界唯二量产上车的SiC MOSFET沟槽设计。这种不对称的半包沟槽结构能够在独特的晶面上形成沟道,并可以使用较厚的栅极氧化层,实现很低的导通电阻,并提高了可靠性。英飞凌在2016年推出了第一代CoolSiC系列SiC MOSFET,并在2022年更新了第二代产品,相比第一代增强了25%-30%的载电流能力。
目前量产沟槽型SiC MOSFET的国际厂商还包括富士、三菱电机、住友电工、日本电装等,还有更多比如ST、博世、安森美等厂商,都有相关布局,ST计划在2025年推出其首款沟槽型SiC MOSFET产品。从国际厂商的布局来看,沟槽栅SiC MOSFET会是未来更具竞争力的方案。
国内方面,安海半导体、芯塔电子、芯长征科技、中车时代等都已经有相关的专利技术等布局,目前沟槽栅SiC MOSFET的专利竞争较大,特别是日系厂商比如电装、罗姆、富士电机等较为强势。国内厂商入局相对较晚,但相对布局较前的厂商可能会拥有更大的发挥空间。
小结:
总而言之,提高SiC MOSFET性能的几个重要指标,包括更小的元胞间距、更低的导通电阻、更低的开关损耗、更高的可靠性(栅极氧化保护),几乎都指向了沟槽栅结构。从2015年第一款量产沟槽栅SiC MOSFET产品推出到现在过去了8年时间,但市面上能够推出量产产品的厂商并不算多,在目前整体SiC市场持续高速增长的时期,提前布局合适的技术路线,才有机会在未来新的应用市场上占得先机。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
SiC
+关注
关注
29文章
2814浏览量
62638
发布评论请先 登录
相关推荐
医疗机器人发展现状与趋势
医疗机器人作为医疗领域与现代机器人科技的融合体,正逐步引领医疗服务向更高效、更精准的方向发展。以下是对医疗机器人发展现状与趋势的详细分析:
SiC MOSFET模块封装技术及驱动设计
碳化硅作为一种宽禁带半导体材料,比传统的硅基器件具有更优越的性能。碳化硅SiC MOSFET作为一种新型宽禁带半导体器件,具有导通电阻低,开关损耗小的特点,可降低器件损耗,提升系统效率,更适合应用于高频电路。碳化硅SiC
工控机厂家发展现状及未来趋势
中发挥着重要作用。本文将探讨工控机厂家的发展现状、市场需求、技术创新以及未来趋势。一、工控机厂家发展现状工控机厂家是指专门从事工业控制计算机设计、研发、生产和销售的企业。在中国
SiC MOSFET和SiC SBD的区别
SiC MOSFET(碳化硅金属氧化物半导体场效应晶体管)和SiC SBD(碳化硅肖特基势垒二极管)是两种基于碳化硅(SiC)材料的功率半导体器件,它们在电力电子领域具有广泛的应用。尽
我国首次突破沟槽型碳化硅MOSFET芯片制造技术:开启半导体产业新篇章
展现出巨大的应用潜力。近日,国家第三代半导体技术创新中心(南京)宣布成功攻关沟槽型碳化硅MOSFET芯片制造关键技术,这不仅标志着我国在半导体高端制造领域取得了重
本土IDM厂商SiC MOSFET新进展,将应用于车载电驱
电子发烧友网报道(文/梁浩斌)2024年已过半,可以发现800V平台电动汽车在近半年时间里降本效应明显,最低价的800V平台车型极狐阿尔法T5和小鹏G6都已经降至不到18万的价位。 800V平台
英飞凌科技推出新一代碳化硅(SiC)MOSFET沟槽栅技术
英飞凌科技推出新一代碳化硅(SiC)MOSFET沟槽栅技术,开启功率系统和能量转换的新篇章。与上一代产品相比,英飞凌全新的 CoolSiC™ MOS
深入对比SiC MOSFET vs Qorvo SiC FET
众多终端产品制造商纷纷选择采用SiC技术替代硅基工艺,来开发基于双极结型晶体管(BJT)、结栅场效应晶体管(JFET)、金属氧化物半导体场效应晶体管(MOSFET)和绝缘栅双极晶体管(
发表于 04-10 12:31
•1439次阅读
沟槽当道,平面型SiC MOSFET尚能饭否?
电子发烧友网报道(文/梁浩斌)最近,安森美发布了第二代1200V SiC MOSFET产品。安森美在前代SiC MOSFET产品中,采用M1及其衍生的M2技术平台,而这次发布的第二代1
英飞凌发布新一代碳化硅(SiC)MOSFET沟槽栅技术
英飞凌科技股份公司推出的新一代碳化硅(SiC)MOSFET沟槽栅技术,无疑为功率系统和能量转换领域带来了革命性的进步。与上一代产品相比,全新的CoolSiC™
英飞凌推出新一代碳化硅MOSFET沟槽栅技术
在全球电力电子领域,英飞凌科技以其卓越的技术创新能力和领先的产品质量赢得了广泛赞誉。近日,该公司宣布推出新一代碳化硅(SiC)MOSFET沟槽栅技术,标志着功率系统和能量转换领域迈入了
3300V SiC MOSFET栅氧可靠性研究
大功率领域,能显著提高效率,降低装置体积。在这些应用领域中,对功率器件的可靠性要求很高,为此,针对自主研制的3300V SiC MOSFET 开展栅氧可靠性研究。首先,按照常规的评估技术对其进行了高温
评论