0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

储能电池种类介绍2

jf_78858299 来源:写字的高工 动力电池技术 作者:写字的高工 2023-03-24 11:30 次阅读

3 能量存储系统

本节回顾全部储能形式的结构,电能转换过程,性能特点,应用的优点和缺点。

3.1 机械存储系统

机械存储系统(MSS)通常用于发电过程。三个典型的机械储能系统包括抽水蓄能(PHS),压缩空气储能(CAES),以及飞轮储能(FES)。应用最广的MSS是PHS,用于抽水电站。在水量大的季节,将一部分水泵送到高处,储存水势能,利用水自高而低的势能,带动涡轮机发电。这个存储系统贡献了世界大约99%的电力存储容量,大约是全球发电容量的3% [34]。CAES,压缩空气与天然气混合,膨胀,并进一步转化成混合气体,输送到燃气涡轮发电机以产生电力 [35] 。CAES的实时需要等温、绝热和非绝热储存系统 [33]。CAES适用于大容量电力生产。

3.1.1 飞轮储能

由于电力电子和材料工程的进步,飞轮储能系统(FES)适用于电动汽车和动力系统[36]。能量效率在90-95%和功率规模0-50 MW [36 - 43] 。飞轮系统包括在腔室中旋转的圆柱形本体,联接轴承,以及能量传递装置,发电机/电动机一起安装在一个共同的轴上[15,30,36,37] 。保持飞轮不断旋转的能量被转换成推动传动装置的电能。

图片

图4. 基本FES系统结构:(a)两个机械系统和(b)双向能量流 的单一机械系统 [30,33] 。

图4示出了双向能量流和一个机系统的的基本FES系统结构形式[30,33] 。飞轮上的能量都是以动能的形式存在的,由公式(1)定义如下:

图片

其中E是动能,I是惯性矩,ω,m和r分别是飞轮的速度,质量和半径。

从公式(1)可以看出,该能量可以通过增加飞轮的惯性或转速增加。FES系统的主要优点是高的能量和功率密度,理论上无限的充电和放电循环,成本低,寿命长,并且没有放电(DOD)的深度影响 [33,36,37] 。但是,由于风阻和轴承摩擦损失,FES具有很高的自放电特性。FES可以分成高速和低速系统[36 - 39]。高速FES系统通过发电机传输能量来驱动负载,而低速FES系统通过电机接收来自电源的电能。先进的材料技术、设计、几何形状、构建先进的超高速飞轮(UHSF)和无摩擦轴承[36 - 39],FES系统被应用于混合动力电动汽车的储能应用[40-43]。

3.2 电化学储存系统

所有传统的可再充电电池都属于电化学存储系统(EcSSs)[44],特别地指,液流电池( FB )和次级充电电池 EcSSs 。在 EcSSs ,能量从电到化学能 , 反过来再从化学能到电能,能量效率高,物理变化小[44] 。但是,化学 反应可能会 损耗电池寿命,消耗部分能量 [45] 充放电过程 ,没有 有害的辐射和维护工作量小[46]。

3.2.1 液流电池(FB)

FB是可充电的,在FB中,能量储存在电活性物质中。电活性物质溶解在罐中的液体电解质中,通过电池将化学能转化为电能,再将液体泵出反应室。氧化还原流(RFB)和混合流(HFB)是FB的具体实施方式[30] 。 RFB 罐的总大小 反应出电池的总能量的多少[30] 。

RFB表现出高的生命周期稳定性,高效率,灵活 的功率和容量要求 ,这使 液流电池在自主 和独立电网系统中得到应用[47] 。图5 显示了 钒RFB(VRFB)的 结构[47]。在VRFBs中,两种液体带有溶解的金属离子的电解质被泵送到电池塔里面反应。多孔电极,称为阴极和阳极,通过膜分离彼此分隔,电能传递过程,只允许质子通过隔膜。在充电时,活性物质在电极表面反应产生电流;放电期间,溶解的活性物质从反应罐提供电荷给电极 [30] 。RFB的典型实例是铁-钛,铁-铬,以及聚S-溴系统 [48 - 50] 。参考文献提供了几种RFB模型[48 -50] 。

图片

图5钒氧化还原液流电池系统[47] 。

HFB有两个富于活性物质的部分; 一个存储在电池中,另一个留在槽中的液体电解质中。HFB电池是二次电池(SB)和RFB的组合。在RFB中,容量是通过电化学电池的尺寸定义。HFB遵循Zn-Ce和Zn-Br体系特性。在充电时,锌被沉积在电极上,并在放电过程中,锌离子流回到溶液[30] 。FB预期寿命15-20年,4 – 10h放电范围,和60 -70%E FFI ciency 效率范围[51]。目前,RFB和HFB正在设计用于社区能源存储和公用事业规模应用的电力存储,用于提高电能质量,UPS,调峰,增加供电安全以及与可再生能源系统集成[52,53 ]。

3.2.2 二次(可充电)电池

SBs主导着便携式储能设备市场,电动汽车和其他电力和电子应用。这些电池以化学能的形式储存电力,并通过电化学反应过程产生电力[30]。通常,SB由两个电极组成,即阳极和阴极; 电解质、隔膜 和一个外壳[24,32,53]。SB具有良好的特性,如高能量,高功率密度,平坦的放电曲线,低电阻,无记忆,和宽范围的温度性能[24] 。但是,大多数电池含有有毒物质。因此,电池处置过程中的生态影响必须考虑[54]。由于其先进的技术和合理的成本,在EV应用中,主要由蓄电池提供具有高能量密度,高功率密度的蓄电系统 [55-58] 。各种类型的电动车主要包括铅酸(LA),镍基(Ni-Fe,Ni-Zn,Ni-Cd,Ni-MH,Ni-H 2),锌 - 卤素(Zn-Cl 2,Zn-Br 2),金属空气基(Fe-Air,Al-Air,Zn-Air),钠-β(Na-S,Na-NiCl 2),高温锂(Li-Al-FeS ,Li-Al-FeS 2)和一般环境锂[锂聚合物(锂聚合物),锂离子(锂离子)]电池[14,30,45]。

3.2.2.1 铅酸电池。自1860年以来,铅酸电池一直被用作商业能源 [45]。LA电池常见的用法是每台内燃机(ICE)车辆起动电源,由于其坚固耐用,运行安全,温度耐受性好和低成本,通常可用于应急电源,可再生能源储存和电网调峰 [15,30]。电池由Pb作为负极,PbO2 作为正极,H2SO4 作为电解质[14,58]。发生在LA电池中的电化学反应,如方程 (2)。

图片

图6显示了放电和充电过程中的LA化学特征。在放电期间,产生PbSO4,在充电时水被释放。电池日历寿命6 - 15年,在80%DOD最多2000的循环寿命, 70 - 90%充放电效率[14,30] 。起动点火(SLI)电池和UPS电池是LA电池的常见应用,具有较小的额定电压6V,8 V和12 V [58,59]。最近,阀控式LA(VRLA)由于其高功率,低的初始成本和快速充电能力,无需保养的要求[14] ,已经成为铅酸电池的主流。目前的研究主要集中在通过先进VRLA电池材料,降低电池的尺寸和重量,保持高能量密度方面[60,61]。普通VRLA电池包括玻璃纤维电池(AGM)和GEL电池。

图片

图 6. 铅酸电池化学:( a )放电期间,( b )充电期间和( c ) LA 电池原型 [14,30] 。

AGM电池由含有玻璃纤维的电解液组成,该电解液是一种固体材料,可以吸收并容纳酸液而不会泄漏。这些类型的电池体积小巧,占用空间少,抗振性比标准电池高。这种电池类型的特殊之处在于它在充电过程中将氢气和氧气重新结合到装置内部的水中,从而限制了水的损失 [45,58] 。GEL电池由凝胶态电解质制成,其不完全固态电解质形态,可以包含酸液而没有泄漏。与其他电池相比,GEL电池需要较慢且可控的充电。然而,凝胶电解质可能会出现气泡问题,这可能造成电池的永久损坏 [58 - 61] 。

图片

3.2.2.2 镍基电池。

镍基电池利用氢氧化镍作为正极,负极材料。根据有多种。根据负极材料额种类不同,镍基电池可以分为:镍-铁,镍-镉,镍-锌,镍氢,和Ni-H2 [3,14,30,45,62] 。通常,在镍基电池中,活性材料羟基氧化镍作为正极,氢氧化钾作为电解质,金属Fe/Cd/Zn,MH或H2 材料作为负极 [14]。发生在镍基电池中的整体电化学反应式(3):

图片

图7显示了放电和充电过程中镍基电池的化学成分。在放电和充电时,形成Ni(OH)2 和Fe/Cd/Zn(OH)2,M可以有不同成分组成。镍-铁和锌电池,之所以不太实用于电动汽车,是由于它们功率性能低,成本高,循环寿命短,和维护需求高[14] 。的Ni-Fe和Ni-Zn系电池能量效率75%左右。镍镉和金属氢化物目前用于驱动电动汽车,因为它们具有很高的寿命周期(2000次或更多)和能量密度。然而,镍镉具有高的记忆特性,并且价格高,是LA电池的10倍以上 [14,62 -67]。虽然这种类型电芯的所有镍基电池中全部的优点,需要考虑回收问题和材料有毒性问题 [64 - 67]。与此相反,镍氢具有低记忆效应,微小的环境影响性,和大的工作温度范围[14,30,45,62] 。尽管在运行过程中产生热量,并且需要复杂的算法和昂贵的充电器,但环境友好性和其免维护性确保了镍氢电池比电源电池更适用于电动汽车[14] [3]。Ni-H2具有高容量率,长寿命周期,并且容忍过度充电或过度放电而不受损害。然而,这种类型电池价格昂贵,具有与H2 压力成正比的自放电,低体积能量密度,是特别为太空探测生产的电源类型[45,62]。

图片

图 7. 镍基电池化学。( a )放电期间,( b )充电期间,和( c )镍基电池原型 [14,30,45,62] 。

3.2.2.3 锌卤电池。

锌卤电池包括Zn-Cl2 和Zn-Br2,这些电池在EV能源存储方面是可行的。1970年开发了用于电动汽车和静态储能的Zn-Cl2 [14]。Zn-CL2能量密度约90Wh/ L,功率密度约60瓦/千克。Zn-Br2电池适合用于EV能量储存,其能量密度70瓦时/千克,具有快速充电能力,和低的材料成本 [14,45,70,71]。然而,这种电池类型由于具有较低的比功率(90 W / kg),溴的高反应性以及电解液循环和温度控制系统尺寸较大,因此近年来在EV中的应用已经很少[14,45,70]。仍然有研发正在推进用于车辆的Zn-Br2 电池 [71]。Zi-Br2 电池的整体电化学反应用方程 (4)。

图片

在Zn-Br2电池,能量通过Zn和Br组成的系统的电化学反应进行存储和放出,该系统由如下部分组成:锌,溴,锌溴水溶液电解质和电解质存储装置和微孔塑料的隔膜。图8显示了Zn-Br2电池系统[14,45]。在该系统中,锌溴溶液的电解液通过泵在两个电极之间循环。在充电时,反应在负极上沉积锌而在正极上沉积溴;而在放电期间,在其各自的电极上形成锌离子和溴离子。

图片

Fig. 8. Zn-Br2 电池系统 [14,45]

3.2.2.4 金属空气电池。

金属电极作为阳极,从取之不尽空气供应氧气作为阴极 [30,45,72 - 76] 。在金属空气电池中,锂,钙,镁,铁,铝,和Zn被用作阳极的金属 [72 - 76] 。在这些元素中,锂-空气(Li-空气)电池是最具EV应用前景的。因为它的理论能量密度非常高,11.14kWh /kg,不考虑空气,它的比能量超过其他类型电池的100倍以上 [30,74,77-80] 。然而,这种类型电池的起火风险很高,含有水汽的空气就可能造成起火 [30]。

钙-空气(CA-空气)电池具有高能量密度,但它容量衰减非常快,并且比较昂贵[72] 。通常,镁-空气(MG-空气)电池具有高比能量700Wh kg,设计用Mg合金取代Mg单质,在海底车辆上应用[45] 。电化学的可充电铁-空气(铁-空气)电池具有低的比能量75Wh/ kg和与其它金属-空气电池相比更低的成本 [45,72,73]。其全寿命周期成本较低,并且活性材料或形状不会因长时间的电气循环而变形[45,73]。

铝空气(铝-空气)电池具有高比能量,端电压,和安培-小时容量。然而,由于放电期间的水消耗,这些优点减少[45,72]。铝空气电池可机械充电,利用水系电解质,在没有条件电气充电的环境,每次放电后更换铝电极即可实现充电 [45]。先进的Al -空气电池技术用的铝合金制造电极,以避免腐蚀,并且在大的电流密度范围内可以获得98%或以上的库仑效率[46] 。这种类型的电池通常用于为船舶或水下车辆提供动力。铝氧(Al-O2)电池也可以在其他形式下使用,Al-O2 的辅助使得氢-FC 电池获得了几乎双倍的比能量[45,72-76] 。

锌空气(锌空气)电池在技术上是可行的。该电池具有多种FC和常规电池的特性,并且可以进行电气和机械充电。锌-空气电池的反应速率是通过改变气体流量实现的[30,45,72-74,81,82] 。先进的可充电锌空气电池使用双功能空气电极以获得更好的使用寿命,并且可机械充电的锌空气电池的设计方式可以更换放电阳极以避免形变[45,81,82 ]。高性能应用中,设计考虑利用锌-空气电池的高比能量特性,和LA 电池的高功率特性,构成锌-空气混合LA电池存储系统[45,81,82] 。

图9 显示了在放电和充电过程中锌-空气电池的化学成分。在放电时,锌电极通过释放电子而被氧化,并且空气电极产生氢氧根离子。在电池充电过程中,锌沉积在锌电极上,氧气释放到空气电极中 [83] 。

图片

图 9. 锌空气电池化学成分:( a )放电期间,( b )充电期间和( c )锌空气电池原型 [83] 。

总体而言,金属-空气电池,因为它们的低材料成本和高性能,为可再充电的电能存储应用提供了一种选择[61,73] 。在金属 - 空气电池中,整体电化学反应在方程 (5)。

图片

其中Me是金属,例如Li,Ca,Mg,Fe,Al和Zn; n是取决于金属氧化的价态变化的值。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电池
    +关注

    关注

    84

    文章

    10560

    浏览量

    129473
  • 能量存储
    +关注

    关注

    1

    文章

    9

    浏览量

    5430
  • ess
    ess
    +关注

    关注

    0

    文章

    31

    浏览量

    3263
收藏 人收藏

    评论

    相关推荐

    电池展会 广州电池技术展览会

    广州电池展会" action-data="http%3A%2F%2Fimg4.makepolo.net%
    发表于 12-02 18:09

    电池真的可以“吃”

    `环保主义者梦想中的未来是没有污染的世界,只有风能和太阳驱动着电力运转,乘坐太阳汽车,工厂和社区都是零排放。但是,当风能和太阳能不发电时,该怎么办?目前我们用来
    发表于 01-12 08:45

    厉害了,电池,是产业中的热点

    多元化发展,能不再局限于电力储存技术,氢、热、天然气存储等也都被纳入进来,未来领域有望涌现出更多的应用模式、商业模式。
    发表于 02-06 08:28

    电池概述

    2.1、概述电池作为大规模系统的重要形式之一,具有调峰、填谷、调频、调相、事故备用等多种用途。与常规电源相比,大规模
    发表于 11-16 07:20

    什么是液流电池?

    什么是液流电池? 液流电池系统简介     &
    发表于 10-29 15:52 3137次阅读

    液流电池图片介绍

    液流电池图片介绍 全钒液流电池
    发表于 12-18 09:13 1181次阅读

    关于英飞凌太阳模块和电池介绍

    使太阳更加经济的方法之一是提高太阳模块和电池
    的头像 发表于 07-11 02:21 4773次阅读

    太阳路灯电池有哪些类型

    在日程的生活中会经常看到道路两旁会使用太阳路灯作为照明工具。但是在外观看来,不会看到有电池,只能看到收集太阳
    发表于 02-23 07:46 5961次阅读
    太阳<b class='flag-5'>能</b>路灯<b class='flag-5'>储</b><b class='flag-5'>能</b><b class='flag-5'>电池</b>有哪些类型

    什么是电池 电池主要应用领域

    电池指电能的储存。电池主要是指使用于太阳
    发表于 12-21 10:49 6766次阅读

    太阳电池有哪些优缺点?电池的应用情况  

    太阳电池是将太阳转换为电能并储存起来的一种装置。它可以在太阳能不足或无法收集太阳的情
    的头像 发表于 03-20 15:22 3884次阅读
    太阳<b class='flag-5'>能</b>板<b class='flag-5'>储</b><b class='flag-5'>能</b><b class='flag-5'>电池</b>有哪些优缺点?<b class='flag-5'>储</b><b class='flag-5'>能</b><b class='flag-5'>电池</b>的应用情况   

    新能源电池技术有哪些?

    行业发展的关键技术之一。本文将详细介绍新能源电池技术的发展、现状和前景,以及不同类型的电池
    的头像 发表于 08-22 17:06 3199次阅读

    光伏电池有哪几种类型?

    光伏电池有哪几种类型?  光伏电池是一种将太
    的头像 发表于 08-22 17:22 4479次阅读

    电池包ccs结构介绍 电池包的结构原理是什么?

    电池包CCS结构介绍 电池包(Energy
    的头像 发表于 04-29 14:32 2201次阅读

    电池种类有哪些?电池包含哪些电池?

    电池是一种能够存储电能的设备,广泛应用于电力系统、新能源汽车、通信基站、家庭等领域。随着全球能源转型和新型电力系统的建设,
    的头像 发表于 04-29 14:34 5508次阅读

    电池种类及其优缺点

    电池种类繁多,每种电池都有其独特的优点和缺点。
    的头像 发表于 08-08 18:07 1705次阅读