0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用 ClF 3 H 2远程等离子体在氧化硅上选择性蚀刻氮化硅

jf_01960162 来源:jf_01960162 作者:jf_01960162 2023-03-27 10:17 次阅读

引言

在过去时间里,在三维与非型碰撞记忆制造中,氮化硅/氧化硅堆栈的数量增加,SiNx/SiOy层重复层的厚度随着垂直存储密度的增加而不断减小。因此,在SiNx/SiOy堆栈中,SiNx层均匀、超高选择性的对SiOy层的蚀刻越来越具挑战性。到目前为止,SiNx在SiNx堆/SiOy堆中的选择性蚀刻是通过使用热磷酸(h3po4)3-6进行湿式蚀刻来实现的。(江苏英思特半导体科技有限公司

此外,一些用于提高SiNx/SiOy蚀刻选择性的添加剂被发现会在蚀刻后引起氧化物再生问题,除非其工艺条件没有被仔细控制5。为了解决这些问题,需要开发一种各向同性和选择性蚀刻的干法工艺,作为三维非和型碰撞存储器制造的替代技术。(江苏英思特半导体科技有限公司)

实验

图1是本研究中使用的一种远程型电感耦合等离子体(ICP)蚀刻系统的示意图。工艺室内的Te通过阳极氧化法涂覆了氧化铝层。用对流计测量的工艺室的基本压力保持在3×10-3Torr,用电容压力计(气压计)监测的工作压力保持在200 mTorr。对腔室上部的平面型ICP线圈施加13.56 MHz射频功率。(江苏英思特半导体科技有限公司)

对于SiNx的各向同性蚀刻,在ICP反应器中心设置了半径为1.5 mm的多孔的双栅,以防止离子轰击,并在基底上传递自由基。样品温度在样品下方的样品阶段测量,该温度由热电偶监测,并通过连接到外部电源的碳化硅(碳化硅)加热器从25调整到500°C。三氯(ClF3,>99.9%,200 sccm)、H2(>99.999%)和氩(>99.999% Ar,200 sccm)通过圆形气体分配器融合到工艺室。

结果和讨论

图2显示了仅使用三氟化氯气体和三氟化氯远端等离子体的SiNx和SiOy的蚀刻特性。对于三氟化氯远端等离子体,在200 sccm的三氟化氯中加入200 sccm,以提高等离子体的稳定性。如图2a所示,随着射频功率的增加,由于三氟化氯的解离增强,SiNx和SiOy的蚀刻率逐渐增加,分别在~ 90和~ 0.8 nm/min时达到SiNx和SiOy的最大蚀刻率。需要注意的是,SiNx对SiOy的蚀刻选择性对100~400 W的射频功率没有明显变化。如图2b所示,SiNx和SiOy也可以仅通过混合三氟化氯气体进行蚀刻,而不通过射频等离子体解离三氟化氯,而底物温度的升高提高了两种flms的蚀刻速率。

然而,三氟化氯气体处理的整体SiNx蚀刻率仅比三氟化氯远端等离子体蚀刻要低得多,这表明三氟化氯远程等离子体蚀刻比无等离子体热蚀刻是更有效的SiNx蚀刻方法。同时,尽管两种材料的蚀刻速率都随着衬底温度的升高而提高,但SiNx对SiOy的蚀刻选择性都降低了。远端等离子体蚀刻也有同样的趋势。如图2c所示,在300 W的弯曲射频功率下,随着底物温度升高到500°C,蚀刻选择性在40以下逐渐降低,而在600 nm/min时SiNx蚀刻速率增加。(江苏英思特半导体科技有限公司)

16798813926297tvh8jip4r

图1.远程型电感耦合等离子体(ICP)蚀刻器示意图。

16798813932271ysxf7uo8r

图2.SiNx和SiOy (a)的蚀刻特性作为三氟化氯远程等离子体射频功率的函数,(b)作为基底温度和三氟化氯气体化学蚀刻的函数,(c)作为三氟化氯远程等离子体衬底温度的函数。

结论

利用带有ICP源的ClF3/H2远端等离子体,研究了SiNx在SiOy上的各向同性和选择性蚀刻作用。与仅采用热蚀刻或等离子体蚀刻相比,采用等离子体辅助热工艺的Te SiNx蚀刻显示出最高的蚀刻速率和最光滑的表面形态。在三氟化氯远端等离子体中,SiNx和SiOy的温度温度依赖性蚀刻特性表明,SiOy的活化能高于SiNx。

此外,在三氟化氯等离子体中加入H2(20%)提高了SiNx对SiOy的蚀刻选择性,从130提高到200,尽管SiNx的蚀刻率从83降低到23nm/min。我们相信,快速、超高选择性的SiNx蚀刻技术不仅可以应用于下一代三维非和型碰撞存储器制造工艺,还可以应用于需要精确的SiNx蚀刻的各种半导体工艺。(江苏英思特半导体科技有限公司)

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    335

    文章

    28004

    浏览量

    225446
  • 蚀刻
    +关注

    关注

    9

    文章

    422

    浏览量

    15635
  • 氮化硅
    +关注

    关注

    0

    文章

    77

    浏览量

    380
收藏 人收藏

    评论

    相关推荐

    等离子体蚀刻工艺对集成电路可靠的影响

    随着集成电路特征尺寸的缩小,工艺窗口变小,可靠成为更难兼顾的因素,设计上的改善对于优化可靠至关重要。本文介绍了等离子刻蚀对高能量电子和空穴注入栅氧化层、负偏压温度不稳定性、
    的头像 发表于 03-01 15:58 280次阅读
    <b class='flag-5'>等离子体</b><b class='flag-5'>蚀刻</b>工艺对集成电路可靠<b class='flag-5'>性</b>的影响

    LPCVD氮化硅薄膜生长的机理

    可以看出, SiH4提供的是Si源,N2或NH3提供的是N源。但是由于LPCVD反应温度较高,氢原子往往从氮化硅薄膜中去除,因此反应物中氢的含量较低。氮化硅中主要由硅和氮元素组成。而P
    的头像 发表于 02-07 09:44 179次阅读
    LPCVD<b class='flag-5'>氮化硅</b>薄膜生长的机理

    等离子体的一些基础知识

    带正电荷的离子和带负电荷的电子是电离过程中由中性粒子成对产生的,因此整个等离子体呈电中性。‌ 等离子体按照温度可分为高温等离子体和低温
    的头像 发表于 01-20 10:07 348次阅读
    <b class='flag-5'>等离子体</b>的一些基础知识

    OptiFDTD应用:纳米盘型谐振腔等离子体波导滤波器

    几何谐振腔[3]以及环形谐振腔[4]。 MIM波导中,有两种等离子体滤波器,即带通和带阻滤波器。 2D FDTD模拟 选择TM偏振波激发SPPs 应用正弦调制高斯脉冲光来模拟感
    发表于 01-09 08:52

    等离子的基本属性_等离子体如何发生

    射频等离子体(RF等离子体)是气流中通过外部施加的射频场形成的。当气体中的原子被电离时(即电子高能条件下与原子核分离时),就会产生等离子体
    的头像 发表于 01-03 09:14 361次阅读
    <b class='flag-5'>等离子</b>的基本属性_<b class='flag-5'>等离子体</b>如何发生

    氮化硅薄膜的特性及制备方法

    小、化学稳定性好以及介电常数高等一系列优点。本文将主要介绍了氮化硅薄膜的制备方法、特性及其半导体器件制造中的具体应用,重点对比低压化学气相沉积(LPCVD)和等离子体增强化学气相沉积(PECVD)两种制备工艺,并详细解析低应
    的头像 发表于 11-29 10:44 960次阅读
    <b class='flag-5'>氮化硅</b>薄膜的特性及制备方法

    等离子体发射器的工作原理

    探索宇宙的征途中,人类一直寻找更高效、更环保的推进技术。 等离子体基础 等离子体,被称为物质的第四态,是一种由离子、电子和中性粒子组成的
    的头像 发表于 11-29 10:11 829次阅读

    等离子体技术航天中的作用

    的推力,从而提高航天器的效率和经济。 霍尔效应推进器(Hall Effect Thruster, HET) 霍尔效应推进器是一种常见的等离子体推进器,它通过电场加速离子产生推力。这种推进器
    的头像 发表于 11-29 10:10 951次阅读

    等离子体电导率的影响因素

    等离子体的温度是影响其电导率的主要因素之一。等离子体中的粒子(电子和离子高温下具有更高的热能,这使得它们更容易克服库仑势垒,从而增加碰撞频率和电导率。随着温度的升高,电子的平均自
    的头像 发表于 11-29 10:08 820次阅读

    等离子体的定义和特征

    的电导和磁场响应等离子体的特征 电离状态 :等离子体中的原子或分子部分或全部失去电子,形成带电粒子。 电导 :由于存在自由电子和
    的头像 发表于 11-29 10:06 2214次阅读

    等离子体医疗领域的应用

    等离子体的特性 等离子体是一种高度电离的气体,它包含大量的自由电子和离子。这种物质状态具有高能量密度、高反应活性和良好的导电等离子体
    的头像 发表于 11-29 10:04 694次阅读

    等离子体清洗的原理与方法

    等离子体清洗的原理 等离子体是物质的第四态,由离子、电子、自由基和中性粒子组成。等离子体清洗的原理主要基于以下几点: 高活性粒子 :等离子体
    的头像 发表于 11-29 10:03 663次阅读

    氮化硅薄膜制备方法及用途

    、介电常数高等优点,集成电路制造领域被广泛用作表面钝化层、绝缘层、扩散阻挡层、刻蚀掩蔽膜等。 LPCVD 和 PECVD 制备氮化硅薄膜特性对比(下表) 低压化学气相沉积(LPCVD)氮化硅工艺需要高温,通常在 700~800
    的头像 发表于 11-24 09:33 896次阅读
    <b class='flag-5'>氮化硅</b>薄膜制备方法及用途

    什么是电感耦合等离子体,电感耦合等离子体的发明历史

    电感耦合等离子体(Inductively Coupled Plasma, ICP)是一种常用的等离子体源,广泛应用于质谱分析、光谱分析、表面处理等领域。ICP等离子体通过感应耦合方式将射频能量传递给气体,激发成
    的头像 发表于 09-14 17:34 1220次阅读

    利用氨等离子体预处理进行无缝间隙fll工艺的生长抑制

    理想的负斜率,沉积过程应能够实现“自下而上的生长”行为。本研究中,利用等离子体处理的生长抑制过程,研究了二氧化硅等离子体增强原子层沉积(PE-ALD)过程
    的头像 发表于 03-29 12:40 491次阅读
    利用氨<b class='flag-5'>等离子体</b>预处理进行无缝间隙fll工艺的生长抑制