0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

支持瓦特到千瓦级应用的氮化镓技术

星星科技指导员 来源:TI 作者:Arianna Rajabi 2023-03-31 09:14 次阅读

两年多前,德州仪器推出600V氮化镓(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率级尽可能提高(和降低)。

氮化镓在任何功率级别都很关键。工程师正努力提高切换速度、效率和可靠性,同时减小尺寸、重量和元件数量。从历来经验来看,您必须至少对其中的部分因素进行权衡,但德州仪器正通过所有这些优势实现设计,同时通过在一个封装中进行复杂集成来节省系统级成本,并减少电路板元件数量。从将PC适配器的尺寸减半,到为并网应用创建高效、紧凑的10kW转换,德州仪器为您的设计提供了氮化镓解决方案。LMG3410和LMG3411系列产品的额定电压为600 V,提供从低功率适配器到超过2 kW设计的各类解决方案。

通过导通电阻选择器件

内部氮化镓场效应晶体管(FET)的额定值为RDS(on) - 漏极-源极或导通电阻——其在功率转换器的开关和传导损耗中起着重要作用。这些损失会影响系统级效率及散热和冷却方法。因此,通常来讲,RDS(on)额定值越低,可实现的功率水平越高,同时仍保持高效率。但是更高的RDS(on)可能更合适一些应用或拓扑,如图1所示。

pYYBAGQmM_WACnttAACc_-j0q4Y673.png

图 1:采用典型电源拓扑结构的70和50mΩ氮化镓器件

过流保护

集成的过流保护不仅简化了用户的布局和设计,且在短路或其他故障情况下,高速检测实际上对于器件保护非常必要。德州仪器的氮化镓器件产品组合具有<100-ns的电流响应时间,可通过安全关断器件并允许其复位来自我防止意外击穿事件。这可保护器件和系统免受从故障管脚读出的故障条件的影响,如图2所示。

poYBAGQmM_WATRm5AACIfC9rrQc589.png

图 2:LMG3410/LMG3411系列产品的内部器件结构,包括FET、内部栅极驱动、压摆率控制和保护功能

德州仪器的默认过流保护方法被归类为“电流锁存”保护;这意味着,若在器件中检测到任何过流故障,FET将安全关断,并在故障复位前保持关断状态。在我们的70mΩ器件中,故障在36 A触发;对于50mΩ器件,故障触发器扩展到61 A.

基于不同的应用,一些工程师可能更愿意在合理的瞬态条件下运行,为此我们提供逐周期过流保护。通过逐周期保护,在发生过流故障时,FET将安全关断,且输出故障信号将在输入脉冲宽度调制器变为低电平后清零。FET可在下一个周期内重启,且在瞬态条件下运行,同时仍能防止器件过热。

表1所示为德州仪器的各类氮化镓器件的主要规格、结构和典型系统功率电平。

器件 电压(V) RDS(on)(mΩ) FET配置 过流保护方法
LMG5200 80 15 半桥 外接
LMG3410R050 600 50 单通道 锁存
LMG3410R070 600 70 单通道 锁存
LMG3411R070 600 70 单通道 逐周期

表1:通过关键参数选择氮化镓

毫无疑问,氮化镓在半导体竞争中处于领先地位,可用于超级电源开关。因德州仪器的氮化镓器件正在量产且针对更广泛的解决方案,我们将继续为电力行业的每位成员提供更具可扩展性和可访问性的技术。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    184

    文章

    17559

    浏览量

    249394
  • 适配器
    +关注

    关注

    8

    文章

    1931

    浏览量

    67899
  • 氮化镓
    +关注

    关注

    59

    文章

    1610

    浏览量

    116138
收藏 人收藏

    评论

    相关推荐

    氮化发展评估

    却在这两个指标上彰显出了卓越的性能,同时,它还具备某些附加的技术优势。氮化的原始功率密度比当前砷化和 LDMOS 技术的高很多,且
    发表于 08-15 17:47

    MACOM:硅基氮化器件成本优势

    ,尤其是2010年以后,MACOM开始通过频繁收购来扩充产品线与进入新市场,如今的MACOM拥有包括氮化(GaN)、硅锗(SiGe)、磷化铟(InP)、CMOS、砷化技术,共有4
    发表于 09-04 15:02

    氮化的卓越表现:推动主流射频应用实现规模化、供应安全和快速应对能力

    产生深远影响。MACOM估计,采用0.1美元/千瓦时的平均能量率模型时,仅将一年内部署的新大型基站转换为MACOM硅基氮化技术一项便可节省超过1亿美元的费用。 新时代 硅基
    发表于 08-17 09:49

    氮化GaN技术助力电源管理革新

    能源并占用更小空间,所面临的挑战丝毫没有减弱。氮化(GaN)等新技术有望大幅改进电源管理、发电和功率输出的诸多方面。预计2030年,电力电子领域将管理大约80%的能源,而2005年
    发表于 11-20 10:56

    什么是氮化技术

    两年多前,德州仪器宣布推出首款600V氮化(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率
    发表于 10-27 09:28

    氮化GaN技术促进电源管理的发展

    的挑战丝毫没有减弱。氮化(GaN)等新技术有望大幅改进电源管理、发电和功率输出的诸多方面。预计2030年,电力电子领域将管理大约80%的能源,而2005年这一比例仅为30%1。这相
    发表于 11-03 08:59

    氮化已经不足一元,并且顺丰包邮?联想发动氮化价格战伊始。

    氮化充电器从最开始量产至今,已过去了四年多,售价也从原本数百元天价逐渐走向亲民,近日发现,联想悄然地发动氮化快充价格战,65W 双口
    发表于 06-14 11:11

    支持瓦特千瓦应用的氮化技术介绍

    两年多前,德州仪器宣布推出首款600V氮化(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率
    发表于 11-10 06:36

    什么是氮化功率芯片?

    eMode硅基氮化技术,创造了专有的AllGaN™工艺设计套件(PDK),以实现集成氮化 FET、
    发表于 06-15 14:17

    为什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用中,传统硅器件在能量转换方面,已经达到了它的物理
    发表于 06-15 15:47

    氮化: 历史与未来

    的存在。1875年,德布博德兰(Paul-Émile Lecoq de Boisbaudran)在巴黎被发现,并以他祖国法国的拉丁语 Gallia (高卢)为这种元素命名它。纯氮化
    发表于 06-15 15:50

    你知道千瓦(kW)和千瓦时(kWh)的区别吗?

    相信大家对千瓦千瓦时这两个单位都曾有耳闻,但相信有相当一部分朋友像我一样不知道他们的具体区别,那就跟大家普及一下这方面的知识。
    发表于 12-03 09:41 5w次阅读

    支持瓦特千瓦应用的氮化技术

    德州仪器的默认过流保护方法被归类为“电流锁存”保护;这意味着,若在器件中检测到任何过流故障,FET将安全关断,并在故障复位前保持关断状态。在我们的70mΩ器件中,故障在36 A触发;对于50mΩ器件,故障触发器扩展61 A.
    发表于 04-24 14:36 785次阅读
    <b class='flag-5'>支持</b><b class='flag-5'>瓦特</b><b class='flag-5'>到</b><b class='flag-5'>千瓦</b><b class='flag-5'>级</b>应用的<b class='flag-5'>氮化</b><b class='flag-5'>镓</b><b class='flag-5'>技术</b>

    支持瓦特千瓦应用的氮化技术

    毫无疑问,氮化在半导体竞争中处于领先地位,可用于超级电源开关。
    的头像 发表于 05-31 15:35 3076次阅读

    支持瓦特千瓦应用的氮化技术

    支持瓦特千瓦应用的氮化
    发表于 11-01 08:25 1次下载
    <b class='flag-5'>支持</b><b class='flag-5'>瓦特</b><b class='flag-5'>到</b><b class='flag-5'>千瓦</b><b class='flag-5'>级</b>应用的<b class='flag-5'>氮化</b><b class='flag-5'>镓</b><b class='flag-5'>技术</b>