0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种新型独特设计的微晶玻璃电解液

鸿之微 来源:材料科学与工程 2023-04-01 17:35 次阅读

固体硫化物电解液(SSSEs)与锂负极和氧化物正极的结合可以使全固态金属锂电池(ASSLMB)的能量密度成倍增加。然而,空气中的水解/Li/SSSE界面的还原以及SSSEs内部Li树枝晶的生长共同阻碍了硫化物基ASSLMB的实际应用。

来自北京理工大学的学者研制了一种新型的Li2.96P0.98S3.92O0.06-Li3N微晶玻璃电解液,其中O和N取代生成了POS33-,而Li3N独特的功能单元使得在RT下具有优异的性能(σLi+=1.58 mS cm-1)。值得注意的是,Li2.96P0.98S3.92O0.06-Li3N中的POS33-单元可以很好地防止在45-50%的湿度下的结构降解。Li2.96P0.98S3.92O0.06-Li3N的临界电流密度达到1 mA cm-2/ 1mAh cm-2@RT。此外,Li//Li电池在0.3 mA cm-2/0.3 mAh cm-2和0.5 mA cm-2/0.5 mAh cm-2的RT下实现了前所未有的超过1000h的镀锂/剥离寿命

TOF-SIMS和深度X射线光电子能谱(XPS)分析表明,在Li/Li2.96P0.98S3.92O0.06-Li3N界面形成了富含热力学稳定的Li2O和Li3N颗粒的预固液界面相,从而抑制了Li2.96P0.98S3.92O0.06-Li3N界面反应和Li枝晶的生长。此外,LiNbO3@nCa/Li2.96P0.98S3.92O0.06-Li3N/Li电池的初始放电容量分别为177.3、177.6和177.8 mAh g-1,负载量分别为7.5、16.50和21.5 mg cm-2。因此,新型Li2.96P0.98S3.92O0.06-Li3N GCE解决了所有关键的挑战性问题,在基于硫化物的高性能ASSLMB具有巨大的潜力

16cae878-bf9b-11ed-bfe3-dac502259ad0.png

图 1.结构分析,a)XRD,b)拉曼光谱,c)Li2.96P0.98S3.92O0.06-Li3N的31P MAS-NMR,d,e)Li2.96P0.98S3.92O0.06-Li3N玻璃陶瓷电解质的S 2p和P 2p XPS光谱,以及f)Li3PS4的P k-edge光谱(x = 0,0.02,0.04和0.06)。

16f70818-bf9b-11ed-bfe3-dac502259ad0.png

图 2.a) O-掺杂 Li3PS4的晶体结构 b) 路径-1 和路径-2, c) 路径-3, d) 路径-4.e) 不同四种途径的锂离子能量势垒(eV)对k和f)不同原子的原子位置的均方根偏差(RMSD)。

1727677e-bf9b-11ed-bfe3-dac502259ad0.png

图 3.a) 空气中产生的H2S的时间依赖量。b) Li2.96P0.98S3.92O0.06-Li3N GCE在空气暴露前后的XRD图像。c) 在暴露于潮湿空气之前和之后,Li2.96P0.98S3.92O0.06-Li3N的31P MAS-NMR。d,e) 空气暴露后Li2.96P0.98S3.92O0.06-Li3N的S 2p和P 2p XPS光谱。f) 在空气暴露之前和之后,Li2.96P0.98S3.92O0.06-Li3N的P K-edge光谱。g)Li2.96P0.98S3.92O0.06-Li3N SSE 粉末在空气暴露后的扫描电镜。

174aaf22-bf9b-11ed-bfe3-dac502259ad0.png

图 4.Li-Li电池在RT下电流密度阶跃增加的恒电流循环 a) Li/Li3PS4/Li, b) Li/ Li2.96P0.98S3.92O0.06-Li3N /Li。c) 临界电流密度与硫酸化物GCE组成的关系。d) Li/ Li2.96P0.98S3.92O0.06-Li3N /Li 对称电池,0.3 mA cm–2/0.3 mAh cm–2,e) 0.5 mA cm–2/0.5 mAh cm–2的SEM图像,f,g)原始Li-金属的表面形态,h)表面i)在0.3 mA cm-2/ 0.3 mAh cm-2下在RT测试200小时后 j)检索到的Li-metal的横截面形态,以及k)Li2.96P0.98S3.92O0.06-Li3N颗粒的横截面视图,在室温下以0.3 mA cm-2/ 0.3 mAh cm-2测试200小时之后的结果。

177b8138-bf9b-11ed-bfe3-dac502259ad0.png

图 5.通过密度泛函理论(DFT)计算结构松弛后的a)Li/Li3PS4和b)Li/ Li2.96P0.98S3.92O0.06-Li3N的界面配置。c) 从Li/ Li2.96P0.98S3.92O0.06-Li3N /Li对称电池中取出的锂负极,在0.3 mA cm–2/0.3 mAh cm–2下循环200 h后的结果 ;c1–c6) 在 ToF-SIMS 测量期间用 Cs 离子束溅射后,锂金属上的化学物质图像。d) ToF-SIMS深度显示锂金属上每个元素的深度。XPS深度分析Li/ Li2.96P0.98S3.92O0.06-Li3N界面的 e)N 1s和f)O 1s光谱。

17b3177e-bf9b-11ed-bfe3-dac502259ad0.png

图6.ASSLMBs的恒电流循环性能。a,d,g) 充放电曲线,b,e,h) LiNbO3@NCA/Li2.96P0.98S3.92O0.06-Li3N/Li电池在 7.50、16.50 和 21.50 mg cm–2NCA 负载下的长期循环性能。c,f,i) LiNbO3@NCA/Li2.96P0.98S3.92O0.06-Li3N /Li电池在长期循环性能前后的交流阻抗谱。所有ASSLMB在室温下均在0.1 mA cm–2电流密度下进行测试。

综上所述,本文采用固态球磨法设计了一系列LiNO3掺杂Li3PS4GCE。在优化的LiNO3含量下(x=0.02),在Li2.96P0.98S3.92O0.06-Li3N GCE中形成了理想数量的POS33-和Li3N独特的功能单元。本文发现:O取代S显著改善了动力学性质,Li+在O原子周围的跃迁空间比S大,在RT下实现了高达1.58 mS cm-1的电导率。

此外,氧取代的POS33-独特的功能单元防止了在45-50%湿度下的结构退化,从而内在地抑制了硫化氢的产生。其次,Li2.96P0.98S3.92O0.06-Li3N GCE在RT下表现出良好的临界电流密度1 mA cm-2/1mAh cm-2。新型Li2.96P0.98S3.92O0.06-Li3N GCE在0.3 mA cm-2/0.3 mAh cm-2和0.5 mA cm-2/0.5 mAh cm-2@RT条件下表现出优异的Li电镀/剥离性能(大于1000 h)。

此外,负载为7.50、16.50和21.50 mg cm-2的LiNbO3@NCA//Li电池具有优异的循环性能,在RT下测量后容量保持率分别为93.45%、81.58%和83.38%。结果表明,Li2.96P0.98S3.92O0.06-Li3N GCE与电极(特别是锂金属负极)都是相容的,在单电解层用于ASSLMBs的实际应用中具有很大的潜力。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    259

    文章

    8031

    浏览量

    169491
  • 电解液
    +关注

    关注

    10

    文章

    838

    浏览量

    23060
  • XPS
    XPS
    +关注

    关注

    0

    文章

    97

    浏览量

    11968
  • 固态电池
    +关注

    关注

    9

    文章

    691

    浏览量

    27694

原文标题:文章转载丨北理《AFM》:潜力巨大!一种新型的独特设计电解液

文章出处:【微信号:hzwtech,微信公众号:鸿之微】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    一种新型的钠金属电池负极稳定化策略

    钠金属电池因其高理论能量密度和低氧化还原电位而具有广泛的应用前景。然而,钠金属阳极与电解液之间不可避免的副反应、钠金属在循环过程中形成的钠枝,以及界面上不均匀的电场分布,都会导致电池循环稳定性的下降。
    的头像 发表于 10-28 09:36 205次阅读
    <b class='flag-5'>一种</b><b class='flag-5'>新型</b>的钠金属电池负极稳定化策略

    贴片电解电容正负极判断方法

    贴片电解电容是一种常见的电子元件,广泛应用于电源、滤波、耦合、去耦等领域。正确判断贴片电解电容的正负极对于电路的正常工作至关重要。 、贴片电解
    的头像 发表于 08-21 09:09 822次阅读

    玻璃流控芯片前景分析

    玻璃流控芯片是一种玻璃制成的小型装置,用于在尺度水平上操纵和分析流体。 它由在玻璃基板上蚀
    的头像 发表于 07-21 15:05 416次阅读
    <b class='flag-5'>玻璃</b><b class='flag-5'>微</b>流控芯片前景分析

    镍氢电池的电解液是什么

    镍氢电池是一种常见的二次电池,具有较高的能量密度和良好的循环性能。其电解液是电池中的关键组成部分,对电池的性能和寿命有重要影响。 、镍氢电池简介 镍氢电池(Ni-MH Battery)是一种
    的头像 发表于 07-19 15:35 615次阅读

    ATA-3080C功率放大器在电解液体浸润性测试中的应用

    体浸润性测试中有什么应用呢?今天Aigtek 安泰电子 就给大家分享下。 电解液体浸润,也被称为-界面电化学,是一种科学领域,主要研究
    的头像 发表于 06-12 11:34 194次阅读
    ATA-3080C功率放大器在<b class='flag-5'>电解液</b>体浸润性测试中的应用

    高压电解电容虚标原因,高压电解电容虚标怎么判断

    高压电解电容内部使用的电解液通常是有机液体电解质。由于电解质的化学性质,电容器内部的电解液可能会对金属极板进行腐蚀,导致金属极板损伤。这种损
    的头像 发表于 06-08 17:15 1643次阅读

    新宙邦拟在美国投建10万吨/年电解液项目

    近日,新宙邦发布公告,宣布了项重要的海外扩产计划。为满足北美地区客户对碳酸酯溶剂及锂离子电池电解液日益增长的需求,公司计划在路易斯安那州的Ascension Parish投建个大型生产项目。
    的头像 发表于 05-24 11:29 597次阅读

    新宙邦美国路易斯安那州碳酸酯溶剂和锂离子电池电解液项目启动

     5月22日,广东新宙邦化学股份有限公司宣布,为了满足北美市场的用电需求,将在路易斯安那州Asition Parish投资3.5亿美元新建个年产量达20万吨的碳酸酯溶剂以及10万吨的锂离子电池电解液生产基地
    的头像 发表于 05-23 09:43 379次阅读

    固态电池发展对高分子材料产业的影响探究

    固态电池是一种使用固态电解质替代液态电解液和隔膜的新型电池。相比传统液态电池,固态电池具有更高的能量密度、更好的安全性、更长的使用寿命和更快的充电速度等优势。
    发表于 04-10 12:41 596次阅读
    固态电池发展对高分子材料产业的影响探究

    位传感器监测铅酸电池电解液

    化学反应,电解液位会略微下降,如果位过低,不仅会影响电池的正常工作,还可能会对电池造成损坏。 铅酸电池电解液位指的是
    的头像 发表于 04-08 15:10 610次阅读
    <b class='flag-5'>液</b>位传感器监测铅酸电池<b class='flag-5'>电解液</b><b class='flag-5'>液</b>位

    非质子型弱配位电解液实现无腐蚀超薄锌金属电池

    锌金属电池以高容量、低成本、环保等特点受到广泛关注。但由于金属锌在传统水系电解液中热力学不稳定,锌金属电池的实际应用仍面临挑战。
    的头像 发表于 04-02 09:05 450次阅读
    非质子型弱配位<b class='flag-5'>电解液</b>实现无腐蚀超薄锌金属电池

    一种用于滴中单细胞无标记分析的滴筛选(LSDS)方法

    基于滴的单细胞分析是一种非常强大的工具,可用于以单细胞分辨率研究表型和基因组异质性,从而解决各种生物问题。
    的头像 发表于 03-26 11:17 497次阅读
    <b class='flag-5'>一种</b>用于<b class='flag-5'>微</b><b class='flag-5'>液</b>滴中单细胞无标记分析的<b class='flag-5'>液</b>滴筛选(LSDS)方法

    锂电池电解液如何影响电池质量?锂电池电解液成分优势是什么?

    锂电池电解液如何影响电池质量?锂电池电解液成分优势是什么? 锂电池电解液是锂离子电池的关键组成部分之,它直接影响电池的性能和质量。 、锂
    的头像 发表于 01-11 14:09 1048次阅读

    永太科技与宁德时代签订电解液采购合同

    根据这份补充协议,宁德时代在2024年及2025年需分别向永太科技采购至少10万吨不同型号的电解液。补充协议实施之后,原协议中原材价格对比标准失效,而原材料价格则需依据市场实际情况双方协商制定。
    的头像 发表于 01-10 09:27 538次阅读

    锂离子电池电解液有什么作用?

           锂离子电池作为一种便携式储能设备,广泛用于手机,笔记本电脑,相机,电动自行车,电动汽车等领域。其中锂电池电解液个不容忽视的方面。毕竟,占电池成本15%的电解质在电池能
    的头像 发表于 12-26 17:05 833次阅读