0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

物理学家在新的维度上揭示了光的量子性质

led13535084363 来源:光行天下 2023-04-06 11:24 次阅读

伦敦帝国学院的物理学家重现了著名的双缝实验,该实验表明光在时间而不是空间中表现为粒子和波。

该实验依靠的是能够在几分之一秒内改变其光学特性的材料,这些材料可用于新技术或探索物理学的基本问题。

最初的双缝实验是由托马斯-杨于1801年在英国皇家学会进行的,表明光作为一种波的作用。然而,进一步的实验表明,光实际上既表现为波又表现为粒子,揭示了其量子性质。 这些实验对量子物理学产生了深远的影响,不仅揭示了光的双重粒子和波的性质,还揭示了其他"粒子",包括电子、中子和整个原子。 现在,由伦敦帝国学院物理学家领导的团队已经利用时间而非空间的"狭缝"进行了实验。他们通过向一种在飞秒(四亿分之一秒)内改变其属性的材料发射光来实现这一目标,只允许光在特定时间内快速通过。

来自帝国理工学院物理系的首席研究员里卡多-萨皮恩扎教授说:"我们的实验揭示了更多关于光的基本性质,同时作为创造能够在空间和时间上细微控制光的终极材料的垫脚石。"

该实验的详情发表在4月3的《自然-物理》杂志上。 最初的双缝设置涉及将光照向一个不透明的屏幕,屏幕上有两条平行的细缝。屏幕后面是一个检测器,检测通过的光线。 为了以波的形式通过狭缝,光分裂成两个波,分别通过每个狭缝。当这些波在另一侧再次交叉时,它们会相互"干扰"。在波峰相遇的地方,它们会相互增强,但在波峰和波谷相遇的地方,它们会相互抵消。这在探测器上形成了光多和光少区域的条纹图案。 光也可以被分割成被称为光子的"粒子",它们可以被记录下来,一次一次地击中探测器,逐渐建立起条纹状的干涉图案。即使研究人员一次只发射一个光子,干扰图案仍然出现,就像光子一分为二并穿过两个狭缝一样。

在该实验的经典版本中,从物理狭缝中出现的光会改变其方向,因此干涉图案被写在光的角度轮廓中。相反,新实验中的时间狭缝改变了光的频率,从而改变了其颜色。这创造了相互干扰的光的颜色,增强和抵消了某些颜色,产生了一个干涉型图案。

该团队使用的材料是一层氧化铟锡薄膜,它是构成大多数手机屏幕的基础材料。该材料的反射率被激光器以超快的时间尺度改变,为光创造了"缝隙"。该材料对激光控制的反应比研究小组预期的要快得多,在几飞秒内改变其反射率。

这种材料是一种超材料,它被设计成具有自然界中没有的特性,这种对光的精细控制是形成超材料的基础条件之一,当与空间控制相结合时,可以创造出新的技术,甚至是用于研究黑洞等基本物理现象的类似物。 共同作者John Pendry爵士教授说:"双倍时间狭缝实验为一种全新的光谱学打开了大门,它能够在辐射的一个周期范围内解决光脉冲的时间结构。" 接下来,该团队希望在"时间晶体"中探索这一现象,它类似于原子晶体,但其光学特性随时间变化。 共同作者Stefan Maier教授说:"时间晶体的概念有可能导致超快的、平行的光学开关"。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 晶体
    +关注

    关注

    2

    文章

    1362

    浏览量

    35472
  • 量子
    +关注

    关注

    0

    文章

    480

    浏览量

    25513
  • 量子物理
    +关注

    关注

    0

    文章

    13

    浏览量

    6749

原文标题:物理学家在新的维度上揭示了光的量子性质

文章出处:【微信号:光行天下,微信公众号:光行天下】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    2024年诺贝尔物理学奖为何要颁给机器学习?

    电子发烧友网报道(文/黄山明)近日,据新华社报道,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德(John Hopfield)和英国裔加拿大科学家杰弗里·欣顿
    的头像 发表于 10-10 00:11 3789次阅读

    FlexDDS NG多通道相位连续相干捷变射频源技术资料V1

    盛铂科技FlexDDS-NG是一种单台机箱最多可达12个通道相位连续直接数字信号合成器 (DDS)。其输出频率可达400MHz,该产品专为量子光学研究而设计, 是直接满足实验物理学家需求的下一代波形发生器。
    发表于 12-24 13:32 0次下载

    无所不能的MATLAB|证明曲速引擎的物理学原理

    中随处可见,但这“科学”部分却始终无法实现。 据《大众机械》报道,“研究人员一直对曲速引擎的概念很感兴趣,这一概念由墨西哥物理学家明戈·阿尔库贝利于 1994 年首次提出。”“根据理论上的阿尔库贝利曲速引擎概念,航天器可以通过收缩前方空间和膨胀后方空间来实现超光速飞
    的头像 发表于 12-04 09:50 217次阅读
    无所不能的MATLAB|证明曲速引擎的<b class='flag-5'>物理学</b>原理

    FlexDDS-NG直接数字信号合成器(DDS)/波形发生器

    盛铂科技FlexDDS-NG是一种单台机箱最多可达12个通道相位连续直接数字信号合成器 (DDS)。其输出频率可达400MHz,该产品专为量子光学研究而设计, 是直接满足实验物理学家需求的下一代波形发生器。
    的头像 发表于 11-28 15:00 196次阅读

    光电效应与电子伏特效应的区别

    。 光电效应 光电效应是指当光照射到金属表面时,金属会释放出电子的现象。这一现象最早由德国物理学家海因里希·赫兹1887年发现,但直到1905年,阿尔伯特·爱因斯坦提出了光电效应的量子理论,才真正解释
    的头像 发表于 11-25 13:38 296次阅读

    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    电润湿(electrowetting)现象于1875年由法国物理学家Lippmann提出,作为现有最成熟的液滴电操控方法,已成功应用于数字微流控、传热强化、淡水收集等领域。
    的头像 发表于 04-19 18:24 1824次阅读
    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    了解几位发明天线的先驱

    1864年左右,苏格兰物理学家詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)提出了无线电理论。
    发表于 03-28 13:54 917次阅读
    了解几位发明天线的先驱

    利用激光技术揭示量子材料隐藏的特性

    使用太赫兹时域光谱学,研究小组观察到了异常的太赫兹放大现象,表明存在激子凝聚体。这一发现为将量子材料用于纠缠光源和量子物理学的其他应用开辟
    的头像 发表于 03-21 06:35 340次阅读
    利用激光技术<b class='flag-5'>揭示</b><b class='flag-5'>了</b><b class='flag-5'>量子</b>材料隐藏的特性

    量子

    具有一些特殊的性质,如叠加和纠缠,使得量子计算机能够某些情况下比传统计算机更高效地解决某些问题。 量子计算机的一个重要应用领域是密码学。传统计算机在破解当前常用的加密算法时需要耗费
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    )的状态,由瑞士物理学家费利克斯·布洛赫(Felix Bloch)1929年提出。布洛赫球是一个单位二维球面 (注意:只是球面而非球体)。 布洛赫球上,一个单量子比特的状态可以用一
    发表于 03-13 17:19

    什么是超快激光?超快激光的应用有哪些呢?

    激光的原理早在 1916 年已经由著名物理学家爱因斯坦(Albert Einstein)的受激辐射理论所预言。
    的头像 发表于 03-11 14:36 1764次阅读
    什么是超快激光?超快激光的应用有哪些呢?

    简单介绍电流的单位:安培,安培

    物理学家认为电流从相对正的点流向相对的负点;这称为常规电流或富兰克林电流。
    的头像 发表于 01-30 11:00 3202次阅读

    量子半导体实现拓扑趋肤效应可用于制造微型高精度传感器和放大器

    德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。
    的头像 发表于 01-24 09:48 589次阅读

    拓扑量子器件的突破性进展

    1月18日,德累斯顿和维尔茨堡的量子物理学家们取得了显著的科技突破。他们研发出一种半导体器件,其卓越的鲁棒性和敏感度得益于一种量子现象——拓扑保护作用,能够免受外部干扰,实现前所未有的精准测量功能。
    的头像 发表于 01-23 14:59 599次阅读
    拓扑<b class='flag-5'>量子</b>器件的突破性进展

    一种新型量子光学技术

    这项研究于1月15日发表《自然·物理学》杂志上,它使用了一种新的光谱技术来探索量子度上光子和电子之间的相互作用。
    的头像 发表于 01-18 10:08 451次阅读
    一种新型<b class='flag-5'>量子</b>光学技术