0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

集成氮化镓改变了传统的智慧吗

星星科技指导员 来源:TI 作者:TI 2023-04-10 10:33 次阅读

氮化镓(GaN)功率FET的早期阶段,故障很常见。更严格的栅极环路设计要求,更高的dv/dt和共源电感的影响使得电路对寄生和噪声更敏感。当TI推出第一个600V GaN功率级样品时,我惊叹于该产品的可靠性和其自我保护功能的有效性。即使功率级已经通过严格的测试验证,我以前的硅器件经验让我对其在实际使用中的可靠性也感到好奇。更重要的是,这些功能会改变电路原型和调试的传统智慧吗?

在最近的交错式转换器设计中,我使用了两个具有一些基本直流总线设计的TI半桥LMG3410-HB-EVM评估模块(EVM),由UCD3138数字脉宽调制(PWM)控制器控制。当两个交错的半桥结合在一起时,我看到PWM信号反复受到高dv/dt(100V /ns)的影响,在480V引起击穿FET,触发集成过流保护(图1)。

与大多数FET——在这种情况下会失效——不同,LMG3410集成功率级使我能够在不发生损坏的情况下重复故障条件,快速调试到根本原因。这可能会非常辛苦的,而且传统器件可能会不安全。

poYBAGQzdY-AClGqAACoCsTIiAI421.png

图1:击穿事件之后功率级自动关闭(蓝色:上部FET PWM;黄色:下部FET PWM;绿色:电感器电流

通过RDRV改变转换速率,我发现单相操作的50V/ns或100V/ns工作稳定,而使用两相操作的100V/ns则不然。根本原因是共模(CM)噪声污染和控制器外围电路的非优化布局,导致不同PWM通道之间的时钟同步不匹配(图2)。

pYYBAGQzdZGAbvbdAAGkMcAng7A098.png

图2:PWM不同步导致电感电流浪涌(蓝色:上部FET PWM;黄色:下部FET PWM;绿色:电感电流;红色:故障信号触发)

TI的ISO7831数字信号隔离器提供了足够高的CM瞬态抗扰度(CMTI)速率(>100V/ns),但隔离电源(通常具有高得多的CM电容)很容易以高dv/dt将噪声从开关节点电压耦合到控制侧(图3)。随着多个相位同时操作,更多的CM噪声会被注入到控制侧。

电源设计人员有时忽视了这个问题,因为硅器件和一些带有外部驱动器的GaN FET不会实现这么高的转换速率。我成功地解决了这个问题,通过在上部FET的隔离电源上增加额外的CM扼流圈,改善了数字控制器的去耦环路,降低了控制器的接地弹跳和噪声耦合。由于LMG3410的集成保护功能,在整个调试过程中,尽管多次出现CM噪声引起的故障,我没有遇到任何灾难性故障。

pYYBAGQzdZKAXI4_AADBDVbi7IE410.png

图3:隔离电源和数字隔离器之间的CM电容

除了过流故障,过热事件是电源转换器中常见的情况。虽然有经验的工程师具有良好的散热设计技能,但保持器件结点的冷却仍然具有挑战性,而且没有太大的错误余地。随着时间的推移,风扇故障或散热器损坏等事件可能导致灾难性故障。‘幸运的是,LMG3410集成了过热保护,当我的风扇电源意外关闭时,LMG341就会起到保护作用。热脱扣点设置为165°C,为短暂的温度漂移留出足够的空间,但防止器件因与冷却相关的系统故障而遭受永久性损坏。

尽管GaN在系统效率、尺寸和冷却方面具有优势,但其高开关速度和频率也呈现出越来越大的挑战。TI GaN产品的保护和其他集成功能正在改变使用分立Si MOSFET了解高速开关转换器设计复杂性的传统智慧。这些产品不仅在我们调试新设计时保护器件免受永久性损坏,还通过防止长期工作时的栅极过应力来提高可靠性,因为集成驱动器设计减少了栅极振荡。

依据摩尔定律,全世界电子产品的尺寸已大幅降低,系统密度得到改善。由于GaN技术的发展和推出易于使用的GaN功率级(如具有自我保护功能的LMG3410),这一趋势现在将发展到电源电子产品。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 转换器
    +关注

    关注

    27

    文章

    8680

    浏览量

    147064
  • MOSFET
    +关注

    关注

    146

    文章

    7148

    浏览量

    213077
  • PWM
    PWM
    +关注

    关注

    114

    文章

    5177

    浏览量

    213742
收藏 人收藏

    评论

    相关推荐

    氮化发展评估

    `从研发到商业化应用,氮化的发展是当下的颠覆性技术创新,其影响波及了现今整个微波和射频行业。氮化对众多射频应用的系统性能、尺寸及重量产生了明确而深刻的影响,并实现了利用
    发表于 08-15 17:47

    氮化充电器

    是什么氮化(GaN)是氮和化合物,具体半导体特性,早期应用于发光二极管中,它与常用的硅属于同一元素周期族,硬度高熔点高稳定性强。氮化
    发表于 09-14 08:35

    传统的硅组件、碳化硅(Sic)和氮化(GaN)

    传统的硅组件、碳化硅(Sic)和氮化(GaN)伴随着第三代半导体电力电子器件的诞生,以碳化硅(Sic)和氮化(GaN)为代表的新型半导体
    发表于 09-23 15:02

    如何用集成驱动器优化氮化性能

    导读:将GaN FET与它们的驱动器集成在一起可以改进开关性能,并且能够简化基于GaN的功率级设计。氮化 (GaN) 晶体管的开关速度比硅MOSFET快很多,从而有可能实现更低的开关损耗。然而,当
    发表于 11-16 06:23

    什么是氮化功率芯片?

    eMode硅基氮化技术,创造了专有的AllGaN™工艺设计套件(PDK),以实现集成氮化 FET、
    发表于 06-15 14:17

    氮化功率芯片的优势

    更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且在能量节约方面,它最高能节约 40% 的能量。 更快:氮化电源 IC 的集成
    发表于 06-15 15:32

    氮化功率芯片如何在高频下实现更高的效率?

    氮化为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化的典型开关频率(65kHz)相比,
    发表于 06-15 15:35

    什么是氮化(GaN)?

    的 3 倍多,所以说氮化拥有宽禁带特性(WBG)。 禁带宽度决定了一种材料所能承受的电场。氮化传统硅材料更大的禁带宽度,使它具有非常细
    发表于 06-15 15:41

    为什么氮化(GaN)很重要?

    的设计和集成度,已经被证明可以成为充当下一代功率半导体,其碳足迹比传统的硅基器件要低10倍。据估计,如果全球采用硅芯片器件的数据中心,都升级为使用氮化功率芯片器件,那全球的数据中心将
    发表于 06-15 15:47

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入
    发表于 06-15 16:03

    纳微集成氮化电源解决方案和应用

    纳微集成氮化电源解决方案及应用
    发表于 06-19 11:10

    氮化(GaN)功率集成电路集成和应用

    氮化(GaN)功率集成电路集成与应用
    发表于 06-19 12:05

    集成氮化改变了传统智慧

    该产品的可靠性和其自我保护功能的有效性。即使功率级已经通过严格的测试验证,我以前的硅器件经验让我对其在实际使用中的可靠性也感到好奇。更重要的是,这些功能会改变电路原型和调试的传统智慧吗? 在最近
    的头像 发表于 11-10 09:38 364次阅读
    <b class='flag-5'>集成</b><b class='flag-5'>氮化</b><b class='flag-5'>镓</b><b class='flag-5'>改变了</b><b class='flag-5'>传统</b>的<b class='flag-5'>智慧</b>吗

    集成氮化改变了传统智慧吗?

    集成氮化改变了传统智慧吗?
    发表于 11-02 08:16 0次下载
    <b class='flag-5'>集成</b><b class='flag-5'>氮化</b><b class='flag-5'>镓</b><b class='flag-5'>改变了</b><b class='flag-5'>传统</b>的<b class='flag-5'>智慧</b>吗?

    氮化(GaN)的最新技术进展

    宽禁带半导体,彻底改变了传统电力电子技术。氮化技术使移动设备的快速充电成为可能。氮化器件经常
    的头像 发表于 07-06 08:13 825次阅读
    <b class='flag-5'>氮化</b><b class='flag-5'>镓</b>(GaN)的最新技术进展