0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

运动目标检测算法简介及其应用

新机器视觉 来源:空中机器人前沿 2023-04-10 16:42 次阅读

作者:sky-guo

运动目标检测的主要目的是从图片序列中将变化区域或者运动物体从背景图像中分离出来,常用于视频监控、异常检测、三维重建、实时定位与建图等领域。运动目标检测是许多领域应用落地的基础,近年来被广泛地关注和研究,对运动无人机检测亦是如此。目前,运动目标检测的基本方法主要包括背景消减法、帧间差分法和光流法。

背景消减法

背景消减法是运动目标检测的经典方法,也是目前的主流方法之一。其算法的核心在于将图片序列中的当前帧与确定好的或者实时更新的背景参考模型进行减法操作,找到不同的区域。它把与背景图像差异超过一定阈值的区域作为运动区域,把小于阈值的部分作为背景区域,从而确定运动目标。背景消减法中背景图像会受到外部光线变化、其他外部环境变化、相机运动等因素的影响,所以背景消减法成功的关键在于背景建模以及背景更新。

fa518b82-cd7f-11ed-bfe3-dac502259ad0.png

图1. 背景消减法流程

传统的背景建模方法主要包括中值法、均值法、单高斯分布模型、混合高斯模型等等。自适应混合高斯背景建模是图像背景建模的重要方法,它的工作原理是基于视频图像中像素点在时间域上的分布来得到像素点上的颜色分布,从而到达背景建模的目的。混合高斯背景建模法不仅对复杂场景的适应强,而且能通过自动计算的模型参数来对背景模型调整,检测速度很快,且检测准确。同时算法能够根据新获取的图像,对背景图像参数进行自适应更新。该方法能够可靠处理光照变化、背景混乱运动的干扰以及长时间的场景变化等,因此基于混合高斯模型建模的背景减法被广泛应用于运动目标检测中。

背景消减法虽然原理简单,但是主要应用于固定摄像头场景。在运动摄像头场景下,背景变化过快或者过于复杂,需要引入额外的图像对齐、复杂的背景更新方法等才能有效工作,这也导致出现计算量过高的问题。

帧间差分法

帧间差分法的核心是对时间上连续的两帧、三帧或者多帧图像进行差分运算来获取运动区域。首先求得相邻帧之间的像素值(通常使用灰度值)之差,然后类似于背景消减法设定参考阈值,逐个对像素点进行二值化处理。其中灰度值为255的是前景,灰度值为0的是背景。最后通过连通域分析,形态学操作等获取完整的运动目标图像。两帧差分法适用于目标运动较为缓慢的场景,当运动较快时,由于目标在相邻帧图像上的位置相差较大,两帧图像相减后并不能得到完整的运动目标,因此,人们在两帧差分法的基础上提出了三帧差分法、五帧差分法等来改善目标包络框。

fa667254-cd7f-11ed-bfe3-dac502259ad0.png

图2. 帧间差分法流程图

由于帧间差分法是选用前一帧的图片作为背景,所以这使得它不仅仅具有实时性高的特点,相比于背景建模的方法更是在更新速度、算法复杂程度以及计算量方面都要有所优化。但是帧差法极容易受到噪声的干扰,对阈值的选择要求很高。阈值选择过低会导致检测结果总包含大量的噪声干扰,阈值选择过高则可能忽视图像中的关键信息,导致缓慢运动的目标被忽略或者目标提取不完整等问题。

光流法

光流法与上述两种方法不同,不需要对场景中的背景图像进行建模,而是利用图像序列中像素在时间域上的变化以及相邻帧图像中每个像素之间的相关性,计算得到光流场,进而提取出运动目标。根据所形成的光流场中二维矢量的稠密程度,光流法可以分为稠密光流和稀疏光流。其中,稠密光流计算图像上所有点的偏移量,得到稠密的光流场,可进行像素级别图像配准,但是计算量大、实时性差。稀疏光流只对于有明显特征的点(如角点)进行跟踪,但是计算量小,实时性好。

总体而言,上述经典运动目标检测方法虽然能够在一些场景中有效检测运动目标,但是主要适用于静止摄像头场景。在移动摄像头场景下普遍存在背景干扰噪声增多,小尺寸运动目标难以检测,计算复杂度高等缺点,难以直接应用到运动像头检测运动无人机等复杂场景中,需要进一步改进和研究。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 噪声
    +关注

    关注

    13

    文章

    1117

    浏览量

    47363
  • 摄像头
    +关注

    关注

    59

    文章

    4806

    浏览量

    95389
  • 相机
    +关注

    关注

    4

    文章

    1343

    浏览量

    53492
  • 检测算法
    +关注

    关注

    0

    文章

    119

    浏览量

    25212
  • 运动目标检测

    关注

    0

    文章

    16

    浏览量

    7395

原文标题:【视觉感知】运动目标检测算法简介及其应用

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    PowerPC小目标检测算法怎么实现?

    检测系统在低功耗、轻小型化等方面提出了更高的要求。因此,完成小目标检测任务不仅需要寻求合理的小目标检测算法,在实现时还需要考虑处理性能和体积
    发表于 08-09 07:07

    求一种基于机载单通道SAR数据的地面运动目标检测算法

    两通道DPCA动目标检测原理是什么?基于机载单通道SAR数据的地面运动目标检测算法
    发表于 06-03 06:04

    基于YOLOX目标检测算法的改进

    1、介绍近年来,自动驾驶汽车不断走进我们的视野中,面向自动驾驶的目标检测算法也成为了国内外的研究热点之一。安全可靠的自动驾驶汽车依赖于对周围环境的准确感知,以便及时做出正确的决策。目标检测
    发表于 03-06 13:55

    一种改进的基于光流的运动目标检测算法

    摘要:讨论了序列图像的运动目标检测算法,在传统的光流场计算方法的基础上,提出了基于帧间差阈值法的快速光流算法。整个算法简单、有效,保证了序列
    发表于 01-09 12:06 29次下载

    基于像素分类的运动目标检测算法

    针对复杂环境下运动目标检测提出一种基于像素分类的运动目标检测算法。该
    发表于 04-10 08:51 4次下载

    运动序列目标检测算法研究及DSP实现

    由于实际场景的多样性,目前常用的运动目标检测算法都还存在一定程度的缺陷,因此本文提出了一种将帧差法和背景减法相结合的方法,实现快速精确地检测和提取
    发表于 07-27 16:42 13次下载

    基于码本模型的运动目标检测算法

    本内容提供了基于码本模型的运动目标检测算法
    发表于 05-19 10:54 32次下载
    基于码本模型的<b class='flag-5'>运动</b><b class='flag-5'>目标</b><b class='flag-5'>检测算法</b>

    基于Surendra改进的运动目标检测算法

    提出了一种基于Surendra改进的运动目标检测算法,通过对背景更新系数的改进,获取稳定准确的背景,再将背景帧与含运动区域的图像帧用差分运算获得运动
    发表于 08-07 19:02 31次下载

    改进的ViBe运动目标检测算法_刘春

    改进的ViBe运动目标检测算法_刘春
    发表于 03-19 11:41 0次下载

    基于背景码本模型的运动目标检测算法

    提出一种基于背景码本模型的视频图像中运动目标检测算法。该算法利用归一化的Mann-Whitney秩和统计量自适应调整判决€‚€‚阈值,使用Mean shift进行码本中码字和方差
    发表于 09-08 15:20 16次下载

    视频序列运动目标检测

    目标检测算法。该算法结合背景减除法和帧间差分法,对当前帧像素点的运动状态进行判断,分别对静止和运动的像素点进行替换和更新,采用最大类间方差(
    发表于 12-01 15:22 2次下载

    基于深度学习的目标检测算法

    整体框架 目标检测算法主要包括:【两阶段】目标检测算法、【多阶段】目标检测算法、【单阶段】
    的头像 发表于 04-30 10:22 1w次阅读
    基于深度学习的<b class='flag-5'>目标</b><b class='flag-5'>检测算法</b>

    浅谈红外弱小目标检测算法

    红外单帧弱小目标检测算法主要通过图像预处理突出小目标同时抑制背景噪声干扰,之后采用阈值分割提取疑似目标,最后根据特征信息进行目标确认。
    的头像 发表于 08-04 17:20 5933次阅读

    运动目标检测算法简介及其应用

    运动目标检测的主要目的是从图片序列中将变化区域或者运动物体从背景图像中分离出来,常用于视频监控、异常检测、三维重建、实时定位与建图等领域。
    的头像 发表于 03-29 09:29 988次阅读

    基于Transformer的目标检测算法

    掌握基于Transformer的目标检测算法的思路和创新点,一些Transformer论文涉及的新概念比较多,话术没有那么通俗易懂,读完论文仍然不理解算法的细节部分。
    发表于 08-16 10:51 627次阅读
    基于Transformer的<b class='flag-5'>目标</b><b class='flag-5'>检测算法</b>