0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

介绍一种基于图像的三维重建方法

新机器视觉 来源:计算机视觉工坊 2023-04-12 18:21 次阅读

介绍

当前,对于一个场景的快速重建是重要的,目标是实现一个快速的、全面的三维重建模型。可以应用于野外的林业资源保护、火灾和地震的灾后抢救、边境安防、油田或者海上平台油气设施、电力设施监测都有十分重要的价值。

现在对于野外覆盖常用卫星。对卫星来说,存在分辨率不足的问题,无法清晰构建出野外的三维场景。而对于较精确的雷达激光扫描重建,既有造价昂贵的缺点,又十分笨重,在野外环境中进行三维重建十分不方便。

随着自动控制、无线传输等技术的发展,无人机的应用领域也越来越多。无人机具备成木低,应用范围广,机动性能好,降低野外作业人员危险等优点。因此基于图像的三维重建方法是解决上述问题的有效手段。

三维重建一直以来就是国内外学者研宄的热点问题,并取得了一些重大的成果。华盛顿大学的GRAIL实验室,采用多核并行技术耗时21小时完成了对罗马城的稀疏点云的重建,成功地实现了对海量数据的大场景稀疏点云的三维重建[1-2]。吴常常实现的VisualSFM算法是较为完善的开源视觉重建算法[3],在该算法使用多核捆绑调整[4]进行参数优化。但是,其对于纹理较弱的场景,不能进行三维重建。

基于深度学习的方法已经引起了人们的广泛关注,并在图像处理中得到了广泛的应用。一些研究者提出了基于深度神经网络的三维重建算法。Ummenhofer等人中提出的 DeMoN 给出了从连续的无约束图像对中恢复图像深度和相机运动的端到端神经网络[5],并且还可以输出表面法线、匹配对之间的光流,该框架由多个编码器-解码器组成。该网络只单纯利用两个图像之间的RGB信息而没有利用几何信息进行估计,三维重建准确度较低,效果不好。

总体框架

本文介绍的方法,整体流程图如图1所示。

f61a245c-d824-11ed-bfe3-dac502259ad0.png

图1.整体流程图

具体步骤如下:

步骤1:首先要对无人机的飞行路径进行之字形规划,无人机拍摄的正射影像可以完全覆盖所需拍摄的场景,进而获取精确、详细的图像序列,无人机在拍摄图像的过程中,实时的将图片与RTK信息回传给地面站。

步骤2:地面站接收无人机拍摄的图片后,将图片按顺序进行排列,并将图像按照每20张分成一个簇。

步骤3:对每个簇中的图片进行提取特征点,并对特征点进行描述。

步骤4:接着进行特征匹配,使用滤波算法来剔除匹配错误的特征点。

步骤5:通过运动恢复结构技术获取相近图像之间的对应关系,初步获取相机在三维空间中的姿态及位置信息。

步骤6:图像中包含GPS信息,利用光束法平差来优化相机姿态参数,得到各个图像簇的稀疏点云。

步骤7:然后,通过恢复每张图像的深度图,基于深度图融合的方法,将这些深度图融合,得到各个图像簇的稠密点云。

步骤8:最后,将各个图像簇的稠密点云进行融合,得到整个场景的三维信息。

具体步骤:

首先,确定无人机拍摄野外场景的具体范围,并对无人机的飞行路径进行规划,这里选用之字形往返式的规划路径方式。这种方式对于无人机的飞行具有简单、便捷的特点,飞行路线大多都是直线,转弯的次数较少,消耗的能量也较少,并且可以完全覆盖所需要拍摄的场景。

此外,无人机所搭载的相机也有一定的要求,需要使用带有RTK载波相位差分技术的照相机,无人机在拍摄场景时,同时可以记录拍摄点位的GPS信息。

在无人机拍摄的图像后,需要将图像以及相应的RTK信息实时回传给地面站。

地面站在接收到无人机拍摄的图片后,将图片按顺序进行排列,这种有序的图像序列,为后续的特征匹配节省很多时间。

如图2所示,图片按顺序排列好之后,将图片按照每20张分成一个簇,后续就是对图像簇进行操作,各个图像簇之间并行处理,提高效率。

f6233fba-d824-11ed-bfe3-dac502259ad0.png

图2. 图像分簇

对每个簇中的图片进行提取特征点,这里提取SIFT特征点,因为SIFT特征具有区分性好,对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性等优点,因此这里使用SIFT特征提取算子对图像集进行特征提取。

提取了图像的特征点之后,需要对图像进特征匹配。在接收图像后已经对图像顺序进行了排序,在特征匹配阶段,只需要对各个图像簇中相邻的两幅图像进行特征匹配,对于n张输入图像,能够将匹配阶段的时间复杂度从O(n2)降低到O(n)。

对于特征匹配,包括多种两两图像之间的匹配算法可供选择。对于基于标量的特征描述符,有暴力匹配、近似最近邻匹配、层级哈希匹配和快速层级哈希匹配四种方式。对于二进制描述符,主要为暴力匹配。暴力匹配对参考图像中的每个特征点,在另一幅待匹配图上计算所有特征点和该点欧式距离,再利用距离比等条件进行剔除,最终得到匹配集。该方法时间复杂度较高,搜索效率较低。

近似最近邻匹配的方法针对大数据集时它的效果要好于暴力匹配。层级哈希匹配和快速层级哈希匹配主要是利用局部敏感哈希将一个图像上的特征点映射成为一个哈希编码,在利用SIFT特征计算两幅图像之间的匹配的时候,对于第一幅图像上的某个特征点,搜索第二幅图像上和该特征点哈希编码的汉明距离小于某个阈值的特征点,然后根据SIFT特征描述符的相似性和比率测试确定最终的匹配。

其中快速层级哈希匹配在速度上更快,利用预先计算好的散列区域,提升了匹配速度。所以, 这里采用快速层级哈希匹配处理两幅图像之间的匹配问题。

在匹配的过程中,会存在一些误匹配的情况,这对后期的三维重建会产生很大的影响,所以这里需要剔除匹配错误的特征点,这里采用RANSAC(Random Sample Consensus,随机抽样一致)算法来剔除误匹配的点。RANSAC算法可以从一组包含“外点”的观测数据集中,通过迭代方式估计数学模型的参数,进而剔除误匹配的点。

RANSAC算法的具体步骤:

(1)首先从数据集中随机选出一组局内点(其数目要保证能够求解出模型的所有参数),计算出一套模型参数。

(2)用得到的模型去测试其他所有的数据点,如果某点的误差在设定的误差阈值之内,就判定其为局内点,否则为局外点,只保留目前为止局内点数目最多的模型,将其记录为最佳模型。

(3)重复执行1,2步足够的次数(即达到预设的迭代次数)后,使用最佳模型对应的局内点来最终求解模型参数,该步可以使用最小二乘法等优化算法。

(4)最后可以通过估计局内点与模型的错误率来评估模型。

在得到图像中特征点的匹配关系后,通过运动恢复结构技术来计算相邻图像之间的对应关系,初步获取相机在三维空间中的姿态及位置信息。

因为无人机拍摄的图像中包含有GPS信息,利用图像和GPS间的约束,使用光束法平差对相机的姿态位置进行优化调整,得到准确的相机位姿以及场景路标点。这里使用全局式SFM(Structure from motion,运动恢复结构)来输出各个图像簇的稀疏点云,因为全局式SFM的重建速度相比于增量式SFM和层级式SFM的重建速度都快,并且重建效果可以达到要求。通过这种方式生成的稀疏点云具有尺寸及地理编码信息。

通过计算出每张图像的深度图,利用深度图融合,来生成三维稠密点云。基于深度图融合的方法,需要首先将每张图像对应起来,即通过旋转、平移等坐标变换对两张图像进行匹配,这些对应信息可以从SFM结果得到,然后再根据同一个空间点在各个深度图中对应的深度信息来共同恢复该空间点的三维位置。如果融合后的点云数量过多,还需要进行三维点云精简处理,进而得到各个图像簇的稠密点云。

根据各所述稠密深度图对应的位移及所述旋转关系,对各个图像簇对应的稠密点云进行融合,在融合的过程中需要剔除一些重叠的点云,进而得到整个场景的三维信息。

总结

本文介绍了基于图像的三维重建方法。首先通过无人机按照规划好的路线拍摄图片,无人机在拍摄完图片的过程中,将图片实时的回传给地面。在地面端接收无人机回传的图片,将接收的图像按顺序进行排列,并将图像按照每20张作为一个簇,分别对每簇中的图像进行提取特征点,并对特征点进行描述。

接着进行特征匹配,使用滤波算法来剔除匹配错误的特征点。根据匹配的特征点,通过运动恢复结构技术获取相邻图像之间的对应关系,初步获取相机在三维空间中的姿态及位置信息。进而利用光束法平差来优化相机姿态参数,得到各个图像簇的稀疏点云。然后,通过恢复每张图像的深度图,基于深度图融合的方法,将这些深度图融合,得到各个图像簇的稠密点云。最后将各个图像簇的稠密点云进行融合,得到整个场景的三维信息。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 解码器
    +关注

    关注

    9

    文章

    1143

    浏览量

    40741
  • 编码器
    +关注

    关注

    45

    文章

    3643

    浏览量

    134512
  • RGB
    RGB
    +关注

    关注

    4

    文章

    798

    浏览量

    58501
  • 无人机
    +关注

    关注

    230

    文章

    10437

    浏览量

    180406
  • 激光雷达
    +关注

    关注

    968

    文章

    3972

    浏览量

    189919

原文标题:一文带你理解基于图像的三维重建

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    商汤科技运用AI大模型实现实景三维重建

    近日,在北京建筑大学举行的2024第八届北京国际城市设计大会上,商汤科技把这些“活过来”的文物实景三维也带到了现场。
    的头像 发表于 11-25 16:49 450次阅读

    CASAIM与迈普医学达成合作,三维扫描技术助力医疗辅具实现高精度三维建模和偏差比对

    近期,CASAIM与广州迈普再生医学科技股份有限公司(简称:迈普医学)合作,基于CT数据三维重建和设计,在医疗辅具研究开发中实现高精度三维建模和偏差比对,实现与缺损区域的精确匹配。
    的头像 发表于 11-12 14:48 177次阅读

    建筑物边缘感知和边缘融合的多视图立体三维重建方法

    航空建筑深度估计是三维数字城市重建中的项重要任务,基于深度学习的多视图立体(MVS)方法在该领域取得了较好的成果。目前的主要方法通过修改M
    的头像 发表于 11-07 10:16 213次阅读
    建筑物边缘感知和边缘融合的多视图立体<b class='flag-5'>三维重建</b><b class='flag-5'>方法</b>

    三维可视化技术的应用现状和发展前景

    工程项目的效率与质量。 医学影像 医学领域利用三维可视化技术进行医学影像诊断、手术规划和教育培训。医生可以利用三维重建图像来更好地了解患者病情,规划手术路径,甚至进行虚拟手术模拟,提升治疗效果与安全性。 虚拟现实与游
    的头像 发表于 09-30 17:57 261次阅读

    三维打印技术原理

    三维打印技术,又称3D打印技术,是一种快速成型技术,其核心原理在于将数字模型文件逐层转化为实体物体。以下是三维打印技术原理的详细阐述:
    的头像 发表于 09-16 15:31 709次阅读

    留形科技借助NVIDIA平台提供高效精确的三维重建解决方案

    本案例中,留形科技借助 NVIDIA Jetson 和 Omniverse 平台,实现边缘设备上的实时、全彩、无损三维重建,从而在建筑细节捕捉、大型基础设施的数字孪生等应用中,大幅提升三维数据采集与处理的效率与精度。
    的头像 发表于 09-09 09:42 450次阅读

    基于大模型的仿真系统研究——三维重建大模型

    问题,赛目推出了基于大模型的仿真系统,利用机器学习、深度学习等人工智能技术,不仅推出自动标注大模型、多模态检测大模型和场景生成大模型等模块,并且引入三维重建大模型加强渲染画面真实性。    通过上述模块,赛目的路采
    的头像 发表于 07-30 14:51 1606次阅读
    基于大模型的仿真系统研究<b class='flag-5'>一</b>——<b class='flag-5'>三维重建</b>大模型

    cad如何进行三维建模

    三维建模是计算机辅助设计(CAD)中的项重要技术,它可以帮助设计师在计算机上创建和编辑三维模型。本文将介绍如何使用CAD软件进行三维建模,
    的头像 发表于 07-09 10:23 913次阅读

    三维可视化系统平台介绍及优势

    三维可视化 系统平台是一种基于三维技术开发的软件系统,主要用于实现对三维空间中数据、模型、场景等内容的可视化展示和操作。这样的系统平台在各个领域都具有广泛的应用,包括但不限于建筑设计、
    的头像 发表于 06-12 16:02 621次阅读
    <b class='flag-5'>三维</b>可视化系统平台<b class='flag-5'>介绍</b>及优势

    三维扫描与3D打印在法医头骨重建中的突破性应用

    随着科技的飞速发展,三维扫描和3D打印技术已经逐渐渗透到医疗领域的各个环节,为临床诊断、治疗和医学研究带来了前所未有的便利。特别是在法医学领域,三维扫描和3D打印技术的应用更是为头骨重建、身份鉴定等
    的头像 发表于 04-19 10:26 499次阅读
    <b class='flag-5'>三维</b>扫描与3D打印在法医头骨<b class='flag-5'>重建</b>中的突破性应用

    常用的RGB-D SLAM解决方案

    BundleFusion是一种稠密的实时室内场景三维重建算法框架。输入为RGB-D相机采集的并且是对齐好的RGB图像和深度图的数据流。输出为重建好的稠密
    的头像 发表于 04-16 09:37 1016次阅读
    常用的RGB-D SLAM解决方案

    泰来三维|文物三维扫描,文物三维模型怎样制作

    文物三维扫描,文物三维模型怎样制作:我们都知道文物是不可再生的,要继续保存传承,需要文物三维数字化保护,所以三维数字化文物保护是非常重要的
    的头像 发表于 03-12 11:10 628次阅读
    泰来<b class='flag-5'>三维</b>|文物<b class='flag-5'>三维</b>扫描,文物<b class='flag-5'>三维</b>模型怎样制作

    光学三维测量技术的原理是什么?

    光学三维测量技术是一种重要的非接触式测量方法,广泛应用于工程、制造、设计等领域。
    的头像 发表于 02-22 10:40 1017次阅读

    角矿山机械设备三维扫描、逆向3d建模抄数设计

    在机械制造领域,逆向工程很多企业经常使用的一种方法,逆向工程可以帮助企业复制、改进和优化产品。CASAIM中科广电主要使用三维扫描技术来获取产品表面的三维数据,三维测量技术能够快速、高
    的头像 发表于 01-16 15:14 508次阅读
    珠<b class='flag-5'>三</b>角矿山机械设备<b class='flag-5'>三维</b>扫描、逆向3d建模抄数设计

    工业上常见的高精度主动式重建算法

    三维重建目前是最为炙手可热的领域。摄影测量或结构光投影技术可以解决漫反射重建问题,但却无法有效应对镜面反射物体(如玻璃、积水、反光物体和汽车车身)等的重建挑战。
    发表于 01-05 10:46 486次阅读
    工业上常见的高精度主动式<b class='flag-5'>重建</b>算法