偏振成像技术作为一种新型的光学成像技术,可以实现抑制背景噪声、提高探测距离、获取目标细节特征和识别伪装目标等功能。由于成像空间维度的不同,偏振二维成像和偏振三维成像在不同领域中具有良好的应用前景。
相比传统的光学三维成像技术,偏振三维成像技术能够反映目标的材质、粗糙度等纹理特征,不依赖背景照度、环境温度和对比度等因素,能够在特殊环境中实现目标的有效探测。此外,超表面偏振器件在光的偏振转换、旋光、矢量光束的产生等方面的研究为偏振成像系统的便携化、实时化提供可能。
据麦姆斯咨询报道,近期,太原理工大学光电工程学院与西安电子科技大学光电工程学院的联合科研团队在《红外与激光工程》期刊上发表了以“光学偏振成像技术的研究、应用与进展”为主题的文章。该文章第一作者为李智渊,主要从事基于超表面偏振器件的偏振三维成像技术的研究工作;通讯作者为翟爱平,主要从事结构光投影三维传感和散射成像等方面的研究。
文中首先介绍了偏振光成像的基本理论,接着对偏振成像系统的四种典型结构进行详细介绍和比较分析,然后分别对偏振二维成像、偏振三维成像和基于超表面偏振器件的偏振探测及成像的研究进展进行综述,最后对偏振成像技术面临的挑战和未来的发展方向进行总结和展望。
偏振成像的基本理论
光的偏振可以用电矢量法、琼斯矩阵法、Poincare球和Stokes矢量法来描述。在偏振成像技术的实际应用中,最为常见的是通过获取Stokes矢量求取需要的偏振特征参数。
图1 反射光与折射光的垂直分量与平行分量示意图
偏振成像系统
分时型偏振成像系统由于工作时需要机械的旋转偏振片,无法实现动态场景的实时探测,而分振幅、分孔径和分焦平面三种偏振成像系统,能一次获得多幅偏振子图像,实现动态目标的实时探测,成为国内外科学家研究的热点。
分时型偏振成像系统是将连续旋转的线偏振片置于探测器前,依次获得各线偏振方向的图像,最后计算得到偏振特征图像。分振幅型偏振成像系统利用分光元件将反射光分成多个通道,在每个通道中实施不同的偏振调制方案,利用多个探测器分别在各通道同时获取同一目标场景的多幅图像。分孔径型偏振成像系统采用离轴或偏心的多组光学系统对同一目标进行探测,即在系统孔径处,离轴放置四个成像透镜形成四个通道,每个通道放置偏振元件,通过一次曝光获取各偏振分量的强度图像。分焦平面型偏振成像系统把不同偏振方向的微偏振阵列(MPA)集成于探测器焦平面(FPA)前,探测器每一个感光像元与一个方向的微偏振片对应,实现单次曝光采集同一目标不同偏振方向的图像,具有高消光比、低损耗、结构紧凑和实时性高等优点,是当前偏振成像的研究热点,也是未来偏振成像系统发展的主流方向。
偏振二维成像技术方法及应用
基于偏振差分的偏振二维成像技术
偏振差分成像(PDI)的思想来源于仿生学。PDI根据浑浊介质的散射光与目标反射光偏振特性的差异对散射光进行抑制,提高了散射介质中目标的可见性。实际应用中,对偏振方向相互正交的线偏振图像进行差分得到偏振差分图像,即Stokes 矢量中的S1。
利用偏振差分的思想实现图像去雾也是国内外科学家研究的热点。雾霾条件下,探测器接收的光主要是散射光和直接透射光,其中散射光是造成图像退化的主要原因。
基于图像融合的偏振二维成像技术
基于图像融合的偏振成像技术将强度图像和偏振特征图像通过特定的算法进行融合,获得比原始图像更丰富的细节信息,有效提高目标与背景的对比度。
偏振图像的融合可以分为三种,一是基于伪彩色映射的图像融合。二是基于多尺度变换的图像融合,多尺度变换的方法有小波变换、支持度变换(SVT)和非下采样剪切波变换(NSST)等。三是基于深度学习的图像融合。
图2 (a)基于NSST偏振图像融合框架图;(b)网络架构
偏振三维成像原理及方法
偏振三维成像原理:光照射到各向异性的物质表面时,会产生镜面反射光和漫反射光。根据反射光成分的不同,偏振三维成像可分为基于镜面反射光和漫反射光的偏振三维成像。
基于镜面反射光的偏振三维成像技术主要包括天顶角的确定和方位角消歧。
基于漫反射光的偏振三维成像技术不存在天顶角模糊问题,因此对方位角的消歧方法展开综述。主要包括:基于传统光学三维成像方法、结合飞行时间法(TOF)、结合多目立体视觉法和结合结构光投影和基于深度学习的偏振三维成像。
目前,偏振三维成像技术已经能够实现对单一静态目标的三维重建。然而,基于镜面反射光的偏振三维成像技术中天顶角的消歧过程繁琐,无法通过一次探测确定唯一的天顶角;基于漫反射光的偏振三维成像技术存在漫反射光分量少,不易探测和镜面反射光干扰等问题,针对其方位角的模糊问题,通常需要结合其他三维感知技术获取先验信息,实现对方位角的约束,严重制约了基于漫反射光偏振三维成像技术的广泛应用。
图3 成像结果:(a)基于偏振成像与双目立体视觉融合的三维重建;(b)近红外单目偏振三维成像;(c)基于稀疏线性方程组的线性深度估计;(d)基于深度学习的偏振三维重建。
基于超表面偏振器件的偏振成像
近年来,随着偏振成像技术领域的蓬勃发展,高效准确的获取偏振信息成为偏振成像技术发展的关键。传统偏振元件集成度低,导致对应的偏振成像系统结构复杂、图像配准误差较大,严重制约了该领域的发展。基于超表面结构的偏振器件能够将各种偏振元件的功能集成于一体实现偏振探测,弥补了传统偏振成像系统的不足。
图4 (a)超表面与CCD阵列的偏振测量装置;(b)器件结构SEM图像;(c)偏振成像;(d)全Stokes偏振成像
总结与展望
文中主要从偏振探测和成像应用两方面对偏振成像技术进行综述。首先比较分析了传统的偏振成像系统,其中,分焦平面型偏振成像系统由于实时性高、集成性好等优点成为当前传统偏振成像的研究热点,但其仍存在偏振阵列消光比低和图像融合算法适用性差等缺点。基于传统的偏振成像系统,偏振二维成像技术和偏振三维成像技术被国内外科学家深入研究并取得了巨大进展。文中详细介绍了基于偏振差分和图像融合的偏振二维成像技术。偏振二维成像技术在水下和雾霾环境中取得了良好的成像效果,但是在散射因子高的环境中成像和对高、低偏振度目标的分离仍然是需要克服的难题。
对于偏振三维成像技术,文中对成像过程中解决方位角和天顶角多值性问题的方法进行详细介绍。虽然当前已经可以实现对自然环境中单一物体的高精度三维重建,但是恢复的是目标的相对高度而非绝对高度。此外,现有的偏振三维成像技术无法对不连续的、动态的目标实现三维形貌恢复,仍需针对这些问题展开进一步研究。随着微纳加工技术和集成技术的不断发展进步,体积更小、集成度更高的超表面结构被国内外科学家研究应用于偏振探测。文中最后对基于超表面结构的偏振器件实现全偏振探测进行介绍,并介绍了超表面偏振器件在成像领域中的应用。
针对偏振成像过程中存在的问题,在未来的工作中,需要从以下四个方向进行深入研究:
(1)优化偏振成像系统。从光源的选择、偏振光的传输、偏振光的调制、偏振光的获取及偏振光的处理五个部分进行优化,减少各个环节中带来的误差;
(2)改进偏振器件和探测器的集成工艺。无论是基于金属线栅的微偏振阵列还是基于超表面结构的偏振器件,高精度的集成工艺能够显著减少像元间的串扰,提高消光比。此外,如何将超表面偏振器件与传统的强度探测器相结合以增强偏振探测能力也是未来需要攻克的难题;
(3)增强算法的普适性和降低算法复杂度。偏振二维成像中需要采用更为鲁棒且效果更好的算法对偏振特征图像进行处理,提取视场中目标更多的信息。偏振三维成像中尽可能减少对其它方法的依赖,研究仅以偏振信息为主的算法实现目标的三维重建;
(4)实现高实时偏振探测。随着三维探测在各领域的应用范围不断增加,偏振三维成像技术仅能实现静态且单一连续目标的三维重建已经不能满足实际的应用需求。可以通过改进以下几个方面实现实时探测:提高图像获取速率;减少三维重建所需偏振子图像的数量;避免利用其它设备获取先验信息。以上均是偏振成像过程中亟待解决的的难题,合理有效的综合各种先进工艺和方法实现高实时偏振探测是未来偏振成像技术的重要发展方向。
审核编辑:刘清
-
TOF
+关注
关注
9文章
485浏览量
36398 -
PDI
+关注
关注
0文章
2浏览量
5620 -
光学成像
+关注
关注
0文章
87浏览量
10108 -
mpa
+关注
关注
0文章
4浏览量
1958
原文标题:综述:光学偏振成像技术的研究、应用与进展
文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论