今天给大家准备了60个python日常高频写法,如果觉得有用,那就点赞收藏起来吧~
一、 数字
1 求绝对值
绝对值或复数的模
In [1]: abs(-6) Out[1]: 6
2 进制转化
十进制转换为二进制:
In [2]: bin(10) Out[2]: '0b1010'十进制转换为八进制:
In [3]: oct(9) Out[3]: '0o11'十进制转换为十六进制:
In [4]: hex(15) Out[4]: '0xf'
3 整数和ASCII互转
十进制整数对应的ASCII字符
In [1]: chr(65) Out[1]: 'A'查看某个ASCII字符对应的十进制数
In [1]: ord('A') Out[1]: 65
4 元素都为真检查
所有元素都为真,返回True,否则为False
In [5]: all([1,0,3,6]) Out[5]: False
In [6]: all([1,2,3]) Out[6]: True
5 元素至少一个为真检查
至少有一个元素为真返回True,否则False
In [7]: any([0,0,0,[]]) Out[7]: False
In [8]: any([0,0,1]) Out[8]: True
6 判断是真是假
测试一个对象是True, 还是False.
In [9]: bool([0,0,0]) Out[9]: True In [10]: bool([]) Out[10]: False In [11]: bool([1,0,1]) Out[11]: True
7 创建复数
创建一个复数
In [1]: complex(1,2) Out[1]: (1+2j)
8 取商和余数
分别取商和余数
In [1]: divmod(10,3) Out[1]: (3, 1)
9 转为浮点类型
将一个整数或数值型字符串转换为浮点数
In [1]: float(3) Out[1]: 3.0如果不能转化为浮点数,则会报ValueError:
In [2]: float('a') # ValueError: could not convert string to float: 'a'
10 转为整型
int(x, base =10) , x可能为字符串或数值,将x 转换为一个普通整数。如果参数是字符串,那么它可能包含符号和小数点。如果超出了普通整数的表示范围,一个长整数被返回。
In [1]: int('12',16) Out[1]: 18
11 次幂
base为底的exp次幂,如果mod给出,取余
In [1]: pow(3, 2, 4) Out[1]: 1
12 四舍五入
四舍五入,ndigits代表小数点后保留几位:
In [11]: round(10.0222222, 3) Out[11]: 10.022 In [12]: round(10.05,1) Out[12]: 10.1
13 链式比较
i = 3 print(1 < i < 3) # False print(1 < i <= 3) # True
二、 字符串
14 字符串转字节
字符串转换为字节类型
In [12]: s = "apple" In [13]: bytes(s,encoding='utf-8') Out[13]: b'apple'
15 任意对象转为字符串
In [14]: i = 100 In [15]: str(i) Out[15]: '100' In [16]: str([]) Out[16]: '[]' In [17]: str(tuple()) Out[17]: '()'
16 执行字符串表示的代码
将字符串编译成python能识别或可执行的代码,也可以将文字读成字符串再编译。
In [1]: s = "print('helloworld')" In [2]: r = compile(s,"", "exec") In [3]: r Out[3]: at 0x0000000005DE75D0, file "
", line 1> In [4]: exec(r) helloworld
17 计算表达式
将字符串str 当成有效的表达式来求值并返回计算结果取出字符串中内容
In [1]: s = "1 + 3 +5" ...: eval(s) ...: Out[1]: 9
18 字符串格式化
格式化输出字符串,format(value, format_spec)实质上是调用了value的__format__(format_spec)方法。
In [104]: print("i am {0},age{1}".format("tom",18)) i am tom,age18
3.1415926 | {:.2f} | 3.14 | 保留小数点后两位 |
---|---|---|---|
3.1415926 | {:+.2f} | +3.14 | 带符号保留小数点后两位 |
-1 | {:+.2f} | -1.00 | 带符号保留小数点后两位 |
2.71828 | {:.0f} | 3 | 不带小数 |
5 | {:0>2d} | 05 | 数字补零 (填充左边, 宽度为2) |
5 | {:x<4d} | 5xxx | 数字补x (填充右边, 宽度为4) |
10 | {:x<4d} | 10xx | 数字补x (填充右边, 宽度为4) |
1000000 | {:,} | 1,000,000 | 以逗号分隔的数字格式 |
0.25 | {:.2%} | 25.00% | 百分比格式 |
1000000000 | {:.2e} | 1.00e+09 | 指数记法 |
18 | {:>10d} | ' 18' | 右对齐 (默认, 宽度为10) |
18 | {:<10d} | '18 ' | 左对齐 (宽度为10) |
18 | {:^10d} | ' 18 ' | 中间对齐 (宽度为10) |
三、 函数
19 拿来就用的排序函数
排序:
In [1]: a = [1,4,2,3,1] In [2]: sorted(a,reverse=True) Out[2]: [4, 3, 2, 1, 1] In [3]: a = [{'name':'xiaoming','age':18,'gender':'male'},{'name':' ...: xiaohong','age':20,'gender':'female'}] In [4]: sorted(a,key=lambda x: x['age'],reverse=False) Out[4]: [{'name': 'xiaoming', 'age': 18, 'gender': 'male'}, {'name': 'xiaohong', 'age': 20, 'gender': 'female'}]
20 求和函数
求和:
In [181]: a = [1,4,2,3,1] In [182]: sum(a) Out[182]: 11 In [185]: sum(a,10) #求和的初始值为10 Out[185]: 21
21 nonlocal用于内嵌函数中
关键词nonlocal常用于函数嵌套中,声明变量i为非局部变量;如果不声明,i+=1表明i为函数wrapper内的局部变量,因为在i+=1引用(reference)时,i未被声明,所以会报unreferenced variable的错误。
def excepter(f): i = 0 t1 = time.time() def wrapper(): try: f() except Exception as e: nonlocal i i += 1 print(f'{e.args[0]}: {i}') t2 = time.time() if i == n: print(f'spending time:{round(t2-t1,2)}') return wrapper
22 global 声明全局变量
先回答为什么要有global,一个变量被多个函数引用,想让全局变量被所有函数共享。有的伙伴可能会想这还不简单,这样写:
i = 5 def f(): print(i) def g(): print(i) pass f() g()f和g两个函数都能共享变量i,程序没有报错,所以他们依然不明白为什么要用global.
但是,如果我想要有个函数对i递增,这样:
def h(): i += 1 h()此时执行程序,bang, 出错了!抛出异常:UnboundLocalError,原来编译器在解释i+=1时会把i解析为函数h()内的局部变量,很显然在此函数内,编译器找不到对变量i的定义,所以会报错。
global就是为解决此问题而被提出,在函数h内,显式地告诉编译器i为全局变量,然后编译器会在函数外面寻找i的定义,执行完i+=1后,i还为全局变量,值加1:
i = 0 def h(): global i i += 1 h() print(i)
23 交换两元素
def swap(a, b): return b, a print(swap(1, 0)) # (0,1)
24 操作函数对象
In [31]: def f(): ...: print('i'm f') ...: In [32]: def g(): ...: print('i'm g') ...: In [33]: [f,g][1]() i'm g创建函数对象的list,根据想要调用的index,方便统一调用。
25 生成逆序序列
list(range(10,-1,-1)) # [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]第三个参数为负时,表示从第一个参数开始递减,终止到第二个参数(不包括此边界)
26 函数的五类参数使用例子
python五类参数:位置参数,关键字参数,默认参数,可变位置或关键字参数的使用。
def f(a,*b,c=10,**d): print(f'a:{a},b:{b},c:{c},d:{d}')默认参数c不能位于可变关键字参数d后.
调用f:
In [10]: f(1,2,5,width=10,height=20) a:1,b:(2, 5),c:10,d:{'width': 10, 'height': 20}可变位置参数b实参后被解析为元组(2,5);而c取得默认值10; d被解析为字典.
再次调用f:
In [11]: f(a=1,c=12) a:1,b:(),c:12,d:{}a=1传入时a就是关键字参数,b,d都未传值,c被传入12,而非默认值。
注意观察参数a, 既可以f(1),也可以f(a=1)其可读性比第一种更好,建议使用f(a=1)。如果要强制使用f(a=1),需要在前面添加一个星号:
def f(*,a,**b): print(f'a:{a},b:{b}')
此时f(1)调用,将会报错:TypeError: f() takes 0 positional arguments but 1 was given
只能f(a=1)才能OK.
说明前面的*发挥作用,它变为只能传入关键字参数,那么如何查看这个参数的类型呢?借助python的inspect模块:
In [22]: for name,val in signature(f).parameters.items(): ...: print(name,val.kind) ...: a KEYWORD_ONLY b VAR_KEYWORD可看到参数a的类型为KEYWORD_ONLY,也就是仅仅为关键字参数。
但是,如果f定义为:
def f(a,*b): print(f'a:{a},b:{b}')查看参数类型:
In [24]: for name,val in signature(f).parameters.items(): ...: print(name,val.kind) ...: a POSITIONAL_OR_KEYWORD b VAR_POSITIONAL可以看到参数a既可以是位置参数也可是关键字参数。
27使用slice对象
生成关于蛋糕的序列cake1:
In [1]: cake1 = list(range(5,0,-1)) In [2]: b = cake1[1:10:2] In [3]: b Out[3]: [4, 2] In [4]: cake1 Out[4]: [5, 4, 3, 2, 1]再生成一个序列:
In [5]: from random import randint ...: cake2 = [randint(1,100) for _ in range(100)] ...: # 同样以间隔为2切前10个元素,得到切片d ...: d = cake2[1:10:2] In [6]: d Out[6]: [75, 33, 63, 93, 15]你看,我们使用同一种切法,分别切开两个蛋糕cake1,cake2. 后来发现这种切法极为经典,又拿它去切更多的容器对象。
那么,为什么不把这种切法封装为一个对象呢?于是就有了slice对象。
定义slice对象极为简单,如把上面的切法定义成slice对象:
perfect_cake_slice_way = slice(1,10,2) #去切cake1 cake1_slice = cake1[perfect_cake_slice_way] cake2_slice = cake2[perfect_cake_slice_way] In [11]: cake1_slice Out[11]: [4, 2] In [12]: cake2_slice Out[12]: [75, 33, 63, 93, 15]与上面的结果一致。
对于逆向序列切片,slice对象一样可行:
a = [1,3,5,7,9,0,3,5,7] a_ = a[5:1:-1] named_slice = slice(5,1,-1) a_slice = a[named_slice] In [14]: a_ Out[14]: [0, 9, 7, 5] In [15]: a_slice Out[15]: [0, 9, 7, 5]频繁使用同一切片的操作可使用slice对象抽出来,复用的同时还能提高代码可读性。
28 lambda 函数的动画演示
有些读者反映,lambda函数不太会用,问我能不能解释一下。
比如,下面求这个lambda函数:
def max_len(*lists): return max(*lists, key=lambda v: len(v))有两点疑惑:
参数v的取值?
lambda函数有返回值吗?如果有,返回值是多少?
调用上面函数,求出以下三个最长的列表:
r = max_len([1, 2, 3], [4, 5, 6, 7], [8]) print(f'更长的列表是{r}')程序完整运行过程,动画演示如下:
结论:
参数v的可能取值为*lists,也就是tuple的一个元素。
lambda函数返回值,等于lambda v冒号后表达式的返回值。
四、 数据结构
29 转为字典
创建数据字典
In [1]: dict() Out[1]: {} In [2]: dict(a='a',b='b') Out[2]: {'a': 'a', 'b': 'b'} In [3]: dict(zip(['a','b'],[1,2])) Out[3]: {'a': 1, 'b': 2} In [4]: dict([('a',1),('b',2)]) Out[4]: {'a': 1, 'b': 2}
30 冻结集合
创建一个不可修改的集合。
In [1]: frozenset([1,1,3,2,3]) Out[1]: frozenset({1, 2, 3})因为不可修改,所以没有像set那样的add和pop方法
31 转为集合类型
返回一个set对象,集合内不允许有重复元素:
In [159]: a = [1,4,2,3,1] In [160]: set(a) Out[160]: {1, 2, 3, 4}
32 转为切片对象
classslice(start,stop[,step])
返回一个表示由 range(start, stop, step) 所指定索引集的 slice对象,它让代码可读性、可维护性变好。
In [1]: a = [1,4,2,3,1] In [2]: my_slice_meaning = slice(0,5,2) In [3]: a[my_slice_meaning] Out[3]: [1, 2, 1]
33 转元组
tuple()将对象转为一个不可变的序列类型
In [16]: i_am_list = [1,3,5] In [17]: i_am_tuple = tuple(i_am_list) In [18]: i_am_tuple Out[18]: (1, 3, 5)
五、 类和对象
34 是否可调用
检查对象是否可被调用
In [1]: callable(str) Out[1]: True In [2]: callable(int) Out[2]: True
In [18]: class Student(): ...: def __init__(self,id,name): ...: self.id = id ...: self.name = name ...: def __repr__(self): ...: return 'id = '+self.id +', name = '+self.name ... In [19]: xiaoming = Student('001','xiaoming') In [20]: callable(xiaoming) Out[20]: False如果能调用xiaoming(), 需要重写Student类的__call__方法:
In [1]: class Student(): ...: def __init__(self,id,name): ...: self.id = id ...: self.name = name ...: def __repr__(self): ...: return 'id = '+self.id +', name = '+self.name ...: def __call__(self): ...: print('I can be called') ...: print(f'my name is {self.name}') ...: In [2]: t = Student('001','xiaoming') In [3]: t() I can be called my name is xiaoming
35 ascii 展示对象
调用对象的__repr__方法,获得该方法的返回值,如下例子返回值为字符串
>>> class Student(): def __init__(self,id,name): self.id = id self.name = name def __repr__(self): return 'id = '+self.id +', name = '+self.name
调用:
>>> xiaoming = Student(id='1',name='xiaoming') >>> xiaoming id = 1, name = xiaoming >>> ascii(xiaoming) 'id = 1, name = xiaoming'
36 类方法
classmethod装饰器对应的函数不需要实例化,不需要self参数,但第一个参数需要是表示自身类的 cls 参数,可以来调用类的属性,类的方法,实例化对象等。
In [1]: class Student(): ...: def __init__(self,id,name): ...: self.id = id ...: self.name = name ...: def __repr__(self): ...: return 'id = '+self.id +', name = '+self.name ...: @classmethod ...: def f(cls): ...: print(cls)
37 动态删除属性
删除对象的属性
In [1]: delattr(xiaoming,'id') In [2]: hasattr(xiaoming,'id') Out[2]: False
38 一键查看对象所有方法
不带参数时返回当前范围内的变量、方法和定义的类型列表;带参数时返回参数的属性,方法列表。
In [96]: dir(xiaoming) Out[96]: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'name']
39 动态获取对象属性
获取对象的属性
In [1]: class Student(): ...: def __init__(self,id,name): ...: self.id = id ...: self.name = name ...: def __repr__(self): ...: return 'id = '+self.id +', name = '+self.name In [2]: xiaoming = Student(id='001',name='xiaoming') In [3]: getattr(xiaoming,'name') # 获取xiaoming这个实例的name属性值 Out[3]: 'xiaoming'
40 对象是否有这个属性
In [1]: class Student(): ...: def __init__(self,id,name): ...: self.id = id ...: self.name = name ...: def __repr__(self): ...: return 'id = '+self.id +', name = '+self.name In [2]: xiaoming = Student(id='001',name='xiaoming') In [3]: hasattr(xiaoming,'name') Out[3]: True In [4]: hasattr(xiaoming,'address') Out[4]: False
41 对象门牌号
返回对象的内存地址
In [1]: id(xiaoming) Out[1]: 98234208
42 isinstance
判断object是否为类classinfo的实例,是返回true
In [1]: class Student(): ...: def __init__(self,id,name): ...: self.id = id ...: self.name = name ...: def __repr__(self): ...: return 'id = '+self.id +', name = '+self.name In [2]: xiaoming = Student(id='001',name='xiaoming') In [3]: isinstance(xiaoming,Student) Out[3]: True
43 父子关系鉴定
In [1]: class undergraduate(Student): ...: def studyClass(self): ...: pass ...: def attendActivity(self): ...: pass In [2]: issubclass(undergraduate,Student) Out[2]: True In [3]: issubclass(object,Student) Out[3]: False In [4]: issubclass(Student,object) Out[4]: True如果class是classinfo元组中某个元素的子类,也会返回True
In [1]: issubclass(int,(int,float)) Out[1]: True
44 所有对象之根
object 是所有类的基类
In [1]: o = object() In [2]: type(o) Out[2]: object
45 创建属性的两种方式
返回 property 属性,典型的用法:
class C: def __init__(self): self._x = None def getx(self): return self._x def setx(self, value): self._x = value def delx(self): del self._x # 使用property类创建 property 属性 x = property(getx, setx, delx, "I'm the 'x' property.")使用python装饰器,实现与上完全一样的效果代码:
class C: def __init__(self): self._x = None @property def x(self): return self._x @x.setter def x(self, value): self._x = value @x.deleter def x(self): del self._x
46 查看对象类型
classtype(name,bases,dict)
传入一个参数时,返回object的类型:
In [1]: class Student(): ...: def __init__(self,id,name): ...: self.id = id ...: self.name = name ...: def __repr__(self): ...: return 'id = '+self.id +', name = '+self.name ...: In [2]: xiaoming = Student(id='001',name='xiaoming') In [3]: type(xiaoming) Out[3]: __main__.Student In [4]: type(tuple()) Out[4]: tuple
47 元类
xiaoming,xiaohong,xiaozhang都是学生,这类群体叫做Student.
Python 定义类的常见方法,使用关键字class
In [36]: class Student(object): ...: passxiaoming,xiaohong,xiaozhang是类的实例,则:
xiaoming = Student() xiaohong = Student() xiaozhang = Student()创建后,xiaoming 的__class__属性,返回的便是Student类
In [38]: xiaoming.__class__ Out[38]: __main__.Student问题在于,Student类有__class__属性,如果有,返回的又是什么?
In [39]: xiaoming.__class__.__class__ Out[39]: type哇,程序没报错,返回type
那么,我们不妨猜测:Student类,类型就是type,换句话说,Student类就是一个对象,它的类型就是type,所以,Python 中一切皆对象,类也是对象
Python 中,将描述Student类的类被称为:元类。
按照此逻辑延伸,描述元类的类被称为:元元类,开玩笑了~ 描述元类的类也被称为元类。
聪明的朋友会问了,既然Student类可创建实例,那么type类可创建实例吗?如果能,它创建的实例就叫:类 了。你们真聪明!
说对了,type类一定能创建实例,比如Student类了。
In [40]: Student = type('Student',(),{}) In [41]: Student Out[41]: __main__.Student它与使用class关键字创建的Student类一模一样。
Python 的类,因为又是对象,所以和xiaoming,xiaohong对象操作相似。支持:
赋值
拷贝
添加属性
作为函数参数
In [43]: StudentMirror = Student # 类直接赋值 # 类直接赋值 In [44]: Student.class_property = 'class_property' # 添加类属性 In [46]: hasattr(Student, 'class_property') Out[46]: True元类,确实使用不是那么多,也许先了解这些,就能应付一些场合。就连 Python 界的领袖Tim Peters都说:
“元类就是深度的魔法,99%的用户应该根本不必为此操心。
六、工具
48 枚举对象
返回一个可以枚举的对象,该对象的next()方法将返回一个元组。
In [1]: s = ["a","b","c"] ...: for i ,v in enumerate(s,1): ...: print(i,v) ...: 1 a 2 b 3 c
49 查看变量所占字节数
In [1]: import sys In [2]: a = {'a':1,'b':2.0} In [3]: sys.getsizeof(a) # 占用240个字节 Out[3]: 240
50 过滤器
在函数中设定过滤条件,迭代元素,保留返回值为True的元素:
In [1]: fil = filter(lambda x: x>10,[1,11,2,45,7,6,13]) In [2]: list(fil) Out[2]: [11, 45, 13]
51 返回对象的哈希值
返回对象的哈希值,值得注意的是自定义的实例都是可哈希的,list,dict,set等可变对象都是不可哈希的(unhashable)
In [1]: hash(xiaoming) Out[1]: 6139638 In [2]: hash([1,2,3]) # TypeError: unhashable type: 'list'
52 一键帮助
返回对象的帮助文档
In [1]: help(xiaoming) Help on Student in module __main__ object: class Student(builtins.object) | Methods defined here: | | __init__(self, id, name) | | __repr__(self) | | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined)
53 获取用户输入
获取用户输入内容
In [1]: input() aa Out[1]: 'aa'
54 创建迭代器类型
使用iter(obj, sentinel), 返回一个可迭代对象, sentinel可省略(一旦迭代到此元素,立即终止)
In [1]: lst = [1,3,5] In [2]: for i in iter(lst): ...: print(i) ...: 1 3 5
In [1]: class TestIter(object): ...: def __init__(self): ...: self.l=[1,3,2,3,4,5] ...: self.i=iter(self.l) ...: def __call__(self): #定义了__call__方法的类的实例是可调用的 ...: item = next(self.i) ...: print ("__call__ is called,fowhich would return",item) ...: return item ...: def __iter__(self): #支持迭代协议(即定义有__iter__()函数) ...: print ("__iter__ is called!!") ...: return iter(self.l) In [2]: t = TestIter() In [3]: t() # 因为实现了__call__,所以t实例能被调用 __call__ is called,which would return 1 Out[3]: 1 In [4]: for e in TestIter(): # 因为实现了__iter__方法,所以t能被迭代 ...: print(e) ...: __iter__ is called!! 1 3 2 3 4 5
55 打开文件
返回文件对象
In [1]: fo = open('D:/a.txt',mode='r', encoding='utf-8') In [2]: fo.read() Out[2]: 'ufefflife is not so long, I use Python to play.'mode取值表:
字符 | 意义 |
---|---|
'r' | 读取(默认) |
'w' | 写入,并先截断文件 |
'x' | 排它性创建,如果文件已存在则失败 |
'a' | 写入,如果文件存在则在末尾追加 |
'b' | 二进制模式 |
't' | 文本模式(默认) |
'+' | 打开用于更新(读取与写入) |
56 创建range序列
range(stop)
range(start, stop[,step])
生成一个不可变序列:
In [1]: range(11) Out[1]: range(0, 11) In [2]: range(0,11,1) Out[2]: range(0, 11)
57 反向迭代器
In [1]: rev = reversed([1,4,2,3,1]) In [2]: for i in rev: ...: print(i) ...: 1 3 2 4 1
58 聚合迭代器
创建一个聚合了来自每个可迭代对象中的元素的迭代器:
In [1]: x = [3,2,1] In [2]: y = [4,5,6] In [3]: list(zip(y,x)) Out[3]: [(4, 3), (5, 2), (6, 1)] In [4]: a = range(5) In [5]: b = list('abcde') In [6]: b Out[6]: ['a', 'b', 'c', 'd', 'e'] In [7]: [str(y) + str(x) for x,y in zip(a,b)] Out[7]: ['a0', 'b1', 'c2', 'd3', 'e4']
59 链式操作
from operator import (add, sub) def add_or_sub(a, b, oper): return (add if oper == '+' else sub)(a, b) add_or_sub(1, 2, '-') # -1
60 对象序列化
对象序列化,是指将内存中的对象转化为可存储或传输的过程。很多场景,直接一个类对象,传输不方便。
但是,当对象序列化后,就会更加方便,因为约定俗成的,接口间的调用或者发起的 web 请求,一般使用 json 串传输。
实际使用中,一般对类对象序列化。先创建一个 Student 类型,并创建两个实例。
class Student(): def __init__(self,**args): self.ids = args['ids'] self.name = args['name'] self.address = args['address'] xiaoming = Student(ids = 1,name = 'xiaoming',address = '北京') xiaohong = Student(ids = 2,name = 'xiaohong',address = '南京')导入 json 模块,调用 dump 方法,就会将列表对象 [xiaoming,xiaohong],序列化到文件 json.txt 中。
import json with open('json.txt', 'w') as f: json.dump([xiaoming,xiaohong], f, default=lambda obj: obj.__dict__, ensure_ascii=False, indent=2, sort_keys=True)生成的文件内容,如下:
[ { "address":"北京", "ids":1, "name":"xiaoming" }, { "address":"南京", "ids":2, "name":"xiaohong" } ]
-
ASCII
+关注
关注
5文章
172浏览量
35040 -
字符串
+关注
关注
1文章
577浏览量
20485 -
python
+关注
关注
55文章
4779浏览量
84440
原文标题:Python 的一些日常高频写法总结!
文章出处:【微信号:AndroidPush,微信公众号:Android编程精选】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论