0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

神经网络初学者的激活函数指南

Dbwd_Imgtec 来源:未知 2023-04-18 11:20 次阅读
作者:Mouâad B.

来源:DeepHub IMBA


如果你刚刚开始学习神经网络,激活函数的原理一开始可能很难理解。但是如果你想开发强大的神经网络,理解它们是很重要的。

ac8abe46-dd97-11ed-bfe3-dac502259ad0.png

但在我们深入研究激活函数之前,先快速回顾一下神经网络架构的基本元素。如果你已经熟悉神经网络的工作原理,可以直接跳到下一节。

神经网络架构

神经网络由称为神经元的链接节点层组成,神经元通过称为突触的加权连接来处理和传输信息

ac9a3042-dd97-11ed-bfe3-dac502259ad0.png

每个神经元从上一层的神经元获取输入,对其输入的和应用激活函数,然后将输出传递给下一层。

神经网络的神经元包含输入层、隐藏层和输出层。

输入层只接收来自域的原始数据。这里没有计算,节点只是简单地将信息(也称为特征)传递给下一层,即隐藏层。隐藏层是所有计算发生的地方。它从输入层获取特征,并在将结果传递给输出层之前对它们进行各种计算。输出层是网络的最后一层。它使用从隐藏层获得的所有信息并产生最终值。

为什么需要激活函数。为什么神经元不能直接计算并将结果转移到下一个神经元?激活函数的意义是什么?

激活函数在神经网络中的作用

网络中的每个神经元接收来自其他神经元的输入,然后它对输入进行一些数学运算以生成输出。一个神经元的输出可以被用作网络中其他神经元的输入。

acb4189a-dd97-11ed-bfe3-dac502259ad0.png

如果没有激活函数,神经元将只是对输入进行线性数学运算。这意味着无论我们在网络中添加多少层神经元,它所能学习的东西仍然是有限的,因为输出总是输入的简单线性组合。

激活函数通过在网络中引入非线性来解决问题。通过添加非线性,网络可以模拟输入和输出之间更复杂的关系,从而发现更多有价值的模式。

简而言之,激活函数通过引入非线性并允许神经网络学习复杂的模式,使神经网络更加强大。

理解不同类型的激活函数

我们可以将这些函数分为三部分:二元、线性和非线性。

acc53db4-dd97-11ed-bfe3-dac502259ad0.png

二元函数只能输出两个可能值中的一个,而线性函数则返回基于线性方程的值。

非线性函数,如sigmoid函数,Tanh, ReLU和elu,提供的结果与输入不成比例。每种类型的激活函数都有其独特的特征,可以在不同的场景中使用。
1、Sigmoid / Logistic激活函数

Sigmoid激活函数接受任何数字作为输入,并给出0到1之间的输出。输入越正,输出越接近1。另一方面,输入越负,输出就越接近0,如下图所示。

acd85494-dd97-11ed-bfe3-dac502259ad0.png

它具有s形曲线,使其成为二元分类问题的理想选择。如果要创建一个模型来预测一封电子邮件是否为垃圾邮件,我们可以使用Sigmoid函数来提供一个0到1之间的概率分数。如果得分超过0.5分,则认为该邮件是垃圾邮件。如果它小于0.5,那么我们可以说它不是垃圾邮件。

函数定义如下:

acebc204-dd97-11ed-bfe3-dac502259ad0.png

但是Sigmoid函数有一个缺点——它受到梯度消失问题的困扰。当输入变得越来越大或越来越小时,函数的梯度变得非常小,减慢了深度神经网络的学习过程,可以看上面图中的导数(Derivative)曲线。

但是Sigmoid函数仍然在某些类型的神经网络中使用,例如用于二进制分类问题的神经网络,或者用于多类分类问题的输出层,因为预测每个类的概率Sigmoid还是最好的解决办法。
2、Tanh函数(双曲正切)

Tanh函数,也被称为双曲正切函数,是神经网络中使用的另一种激活函数。它接受任何实数作为输入,并输出一个介于-1到1之间的值。

acff2ccc-dd97-11ed-bfe3-dac502259ad0.png

Tanh函数和Sigmoid函数很相似,但它更以0为中心。当输入接近于零时,输出也将接近于零。这在处理同时具有负值和正值的数据时非常有用,因为它可以帮助网络更好地学习。

函数定义如下:

ad12834e-dd97-11ed-bfe3-dac502259ad0.png

与Sigmoid函数一样,Tanh函数也会在输入变得非常大或非常小时遭遇梯度消失的问题。
3、线性整流单元/ ReLU函数

ReLU是一种常见的激活函数,它既简单又强大。它接受任何输入值,如果为正则返回,如果为负则返回0。换句话说,ReLU将所有负值设置为0,并保留所有正值。

ad24411a-dd97-11ed-bfe3-dac502259ad0.png

函数定义如下:

ad47b974-dd97-11ed-bfe3-dac502259ad0.png

使用ReLU的好处之一是计算效率高,并且实现简单。它可以帮助缓解深度神经网络中可能出现的梯度消失问题。

但是,ReLU可能会遇到一个被称为“dying ReLU”问题。当神经元的输入为负,导致神经元的输出为0时,就会发生这种情况。如果这种情况发生得太频繁,神经元就会“死亡”并停止学习。
4、Leaky ReLU

Leaky ReLU函数是ReLU函数的一个扩展,它试图解决“dying ReLU”问题。Leaky ReLU不是将所有的负值都设置为0,而是将它们设置为一个小的正值,比如输入值的0.1倍。他保证即使神经元接收到负信息,它仍然可以从中学习。

ad5b4804-dd97-11ed-bfe3-dac502259ad0.png

函数定义如下:

ad7e9480-dd97-11ed-bfe3-dac502259ad0.png

Leaky ReLU已被证明在许多不同类型的问题中工作良好。
5、指数线性单位(elu)函数

ReLU一样,他们的目标是解决梯度消失的问题。elu引入了负输入的非零斜率,这有助于防止“dying ReLU”问题

ad8ebd2e-dd97-11ed-bfe3-dac502259ad0.png

公式为:

ada1702c-dd97-11ed-bfe3-dac502259ad0.png

这里的alpha是控制负饱和度的超参数。

与ReLU和tanh等其他激活函数相比,elu已被证明可以提高训练和测试的准确性。它在需要高准确度的深度神经网络中特别有用。
6、Softmax函数

在需要对输入进行多类别分类的神经网络中,softmax函数通常用作输出层的激活函数。它以一个实数向量作为输入,并返回一个表示每个类别可能性的概率分布。

softmax的公式是:

adb67666-dd97-11ed-bfe3-dac502259ad0.png

这里的x是输入向量,i和j是从1到类别数的索引

Softmax对于多类分类问题非常有用,因为它确保输出概率之和为1,从而便于解释结果。它也是可微的,这使得它可以在训练过程中用于反向传播。

7、Swish

Swish函数是一个相对较新的激活函数,由于其优于ReLU等其他激活函数的性能,在深度学习社区中受到了关注。

Swish的公式是:

adc64622-dd97-11ed-bfe3-dac502259ad0.png

这里的beta是控制饱和度的超参数。

Swish类似于ReLU,因为它是一个可以有效计算的简单函数。并且有一个平滑的曲线,有助于预防“dying ReLU”问题。Swish已被证明在各种深度学习任务上优于ReLU。


选择哪一种?

首先,需要将激活函数与你要解决的预测问题类型相匹配。可以从ReLU激活函数开始,如果没有达到预期的结果,则可以转向其他激活函数。

以下是一些需要原则:
  • ReLU激活函数只能在隐藏层中使用。
  • Sigmoid/Logistic和Tanh函数不应该用于隐藏层,因为它们会在训练过程中引起问题。
  • Swish函数用于深度大于40层的神经网络会好很多。

输出层的激活函数是由你要解决的预测问题的类型决定的。以下是一些需要记住的基本原则:
  • 回归-线性激活函数

  • 二元分类- Sigmoid

  • 多类分类- Softmax

  • 多标签分类- Sigmoid
选择正确的激活函数可以使预测准确性有所不同。所以还需要根据不同的使用情况进行测试。

END

推荐阅读 对话Imagination中国区董事长:以GPU为支点加强软硬件协同,助力数字化转型合作案例 | Imagination车规级硬件虚拟化帮助Telechips提升显示器的多样性

Imagination Technologies是一家总部位于英国的公司,致力于研发芯片和软件知识产权(IP),基于Imagination IP的产品已在全球数十亿人的电话、汽车、家庭和工作 场所中使用。获取更多物联网智能穿戴、通信汽车电子、图形图像开发等前沿技术信息,欢迎关注 Imagination Tech!


原文标题:神经网络初学者的激活函数指南

文章出处:【微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • imagination
    +关注

    关注

    1

    文章

    570

    浏览量

    61270

原文标题:神经网络初学者的激活函数指南

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    神经元模型激活函数通常有哪几类

    神经元模型激活函数神经网络中的关键组成部分,它们负责在神经元之间引入非线性,使得神经网络能够学
    的头像 发表于 07-11 11:33 832次阅读

    神经网络三要素包括什么

    神经网络是一种受生物神经网络启发而发展起来的数学模型,它在人工智能、机器学习、计算机视觉等领域有着广泛的应用。神经网络的三要素包括神经元、权重和激活
    的头像 发表于 07-11 11:05 828次阅读

    前馈神经网络的基本结构和常见激活函数

    激活函数的非线性变换,能够学习和模拟复杂的函数映射,从而解决各种监督学习任务。本文将详细阐述前馈神经网络的基本结构,包括其组成层、权重和偏置、激活
    的头像 发表于 07-09 10:31 585次阅读

    神经网络的种类及举例说明

    神经网络作为深度学习领域的核心组成部分,近年来在图像识别、自然语言处理、语音识别等多个领域取得了显著进展。本文将从神经网络的基本原理出发,深入讲解其种类,并通过具体实例进行说明,以期为初学者提供一份详尽的入门
    的头像 发表于 07-08 11:06 639次阅读

    rnn是什么神经网络模型

    领域有着广泛的应用。 RNN的基本概念 1.1 神经网络的基本概念 神经网络是一种受生物神经网络启发的数学模型,它由多个神经元(或称为节点)组成,这些
    的头像 发表于 07-05 09:50 516次阅读

    卷积神经网络和bp神经网络的区别在哪

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的详细比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间通过权重连接,
    的头像 发表于 07-04 09:49 9149次阅读

    如何使用神经网络进行建模和预测

    输入信号,对其进行加权求和,然后通过激活函数进行非线性转换,生成输出信号。通过这种方式,神经网络可以学习输入数据的复杂模式和关系。 神经网络的类型
    的头像 发表于 07-03 10:23 661次阅读

    bp神经网络和卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间通过权重连接,并通
    的头像 发表于 07-03 10:12 994次阅读

    BP神经网络激活函数怎么选择

    中,激活函数起着至关重要的作用,它决定了神经元的输出方式,进而影响整个网络的性能。 一、激活函数
    的头像 发表于 07-03 10:02 573次阅读

    卷积神经网络激活函数的作用

    卷积神经网络(Convolutional Neural Networks, CNNs)是深度学习中一种重要的神经网络结构,广泛应用于图像识别、语音识别、自然语言处理等领域。在卷积神经网络中,
    的头像 发表于 07-03 09:18 721次阅读

    卷积神经网络的原理是什么

    基本概念、结构、训练过程以及应用场景。 卷积神经网络的基本概念 1.1 神经网络 神经网络是一种受人脑神经元结构启发的数学模型,由大量的节点(神经
    的头像 发表于 07-02 14:44 551次阅读

    神经网络反向传播算法原理是什么

    介绍反向传播算法的原理、数学基础、实现步骤和应用场景。 神经网络简介 神经网络是一种受人脑启发的计算模型,由大量的神经元(或称为节点)组成。每个神经元接收输入信号,通过
    的头像 发表于 07-02 14:16 478次阅读

    神经网络结构类型和应用实例

    神经网络模型,作为深度学习领域的核心组成部分,近年来在图像识别、自然语言处理、语音识别等多个领域取得了显著进展。本文旨在深入解读神经网络的基本原理、结构类型、训练过程以及应用实例,为初学者提供一份详尽的入门
    的头像 发表于 07-02 11:33 364次阅读

    神经网络激活函数的定义及类型

    引言 神经网络是一种模拟人脑神经元结构的计算模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在神经网络中,激活函数起着至关重要的作用
    的头像 发表于 07-02 10:09 429次阅读

    神经网络中的激活函数有哪些

    神经网络中,激活函数是一个至关重要的组成部分,它决定了神经元对于输入信号的反应方式,为神经网络引入了非线性因素,使得
    的头像 发表于 07-01 11:52 497次阅读