使用的平台:
多数FPGA芯片上没有ADC的功能,而一些应用则需要用到ADC对一些模拟信号,比如直流电压等进行量化,有没有特别简单、低成本的实现方法呢?
在要求转换速率不高的情况下,完全可以借助一颗高速比较器(成本只有几毛钱)来实现对模拟信号的量化,Lattice的官网上一篇文章就介绍了如何制作一个简易的Sigma Delta ADC,如果FPGA能够提供LVDS的接口,连外部的高速比较器都可以省掉。由于我们的小脚丫FPGA核心模块在设计的时候没有考虑到LVDS的应用场景,所以还是需要搭配一个高速的比较器来实现Lattice官网上推荐的简易Sigma Delta ADC的功能。
让小脚丫FPGA通过锁相环PLL运行于120MHz的主时钟(还可以更高,提速到240MHz、360MHz都应该没有问题),测试1KHz以内的模拟信号是没有问题的。
Lattice的官网上就可以下载到简易Sigma Delta ADC的Verilog源代码,可以非常方便地用在其它品牌、其它系列的FPGA上。
下面的截图就是采用120MHz的主时钟实现的对1KHz模拟信号的采样,并通过DDS/DAC输出,口袋仪器M2000采集并显示的模拟信号波形。
M2000口袋仪器显示的1KHz的波形
详细的工作原理介绍可以参考项目https://www.eetree.cn/project/detail/255 及项目页面中的参考资料,在这里以几幅图片来示例一下。
简易Sigma Delta ADC的工作原理
直接连接 - 被测模拟信号的幅度范围为0-3.3V
通过电阻分压网络输入,并在比较器+端提供参考电压,则被采集模拟信号的电压变化范围可以扩展
简易Sigma Delta ADC的性能与逻辑电路的工作频率
在不同的FPGA平台上消耗的逻辑资源
以下就是我们的电赛综合训练板上简易Sigma Delta ADC部分的电路连接
核心代码:
顶层调用代码:
wire [7:0] sd_adc_out; // sigma delta adc data output
wire sample_rdy; // flag for adc conversion
ADC_top my_adc(.clk_in(clk_hs),.rstn(1'b1),.digital_out(sd_adc_out), .analog_cmp(comp_in),.analog_out(ad_pwm),.sample_rdy(sample_rdy));
assign dac_data = sd_adc_out;
assign dac_clk = clk_hs; //120MHz generated by PLL
Sigma Delta ADC顶层程序
//*********************************************************************
//
// ADC Top Level Module
//
//*********************************************************************
module ADC_top (
clk_in,
rstn,
digital_out,
analog_cmp,
analog_out,
sample_rdy);
parameter
ADC_WIDTH = 8, // ADC Convertor Bit Precision
ACCUM_BITS = 10, // 2^ACCUM_BITS is decimation rate of accumulator
LPF_DEPTH_BITS = 3, // 2^LPF_DEPTH_BITS is decimation rate of averager
INPUT_TOPOLOGY = 1; // 0: DIRECT: Analog input directly connected to + input of comparitor
// 1: NETWORK:Analog input connected through R divider to - input of comp.
//input ports
input clk_in; // 62.5Mhz on Control Demo board
input rstn;
input analog_cmp; // from LVDS buffer or external comparitor
//output ports
output analog_out; // feedback to RC network
output sample_rdy;
output [7:0] digital_out; // connected to LED field on control demo bd.
//**********************************************************************
//
// Internal Wire & Reg Signals
//
//**********************************************************************
wire clk;
wire analog_out_i;
wire sample_rdy_i;
wire [ADC_WIDTH-1:0] digital_out_i;
wire [ADC_WIDTH-1:0] digital_out_abs;
assign clk = clk_in;
//***********************************************************************
//
// SSD ADC using onboard LVDS buffer or external comparitor
//
//***********************************************************************
sigmadelta_adc #(
.ADC_WIDTH(ADC_WIDTH),
.ACCUM_BITS(ACCUM_BITS),
.LPF_DEPTH_BITS(LPF_DEPTH_BITS)
)
SSD_ADC(
.clk(clk),
.rstn(rstn),
.analog_cmp(analog_cmp),
.digital_out(digital_out_i),
.analog_out(analog_out_i),
.sample_rdy(sample_rdy_i)
);
assign digital_out_abs = INPUT_TOPOLOGY ? ~digital_out_i : digital_out_i;
//***********************************************************************
//
// output assignments
//
//***********************************************************************
assign digital_out = ~digital_out_abs; // invert bits for LED display
assign analog_out = analog_out_i;
assign sample_rdy = sample_rdy_i;
endmodule
Sigma Delta ADC主程序
//*********************************************************************
//
// SSD Top Level Module
//
//*********************************************************************
module sigmadelta_adc (
clk,
rstn,
digital_out,
analog_cmp,
analog_out,
sample_rdy);
parameter
ADC_WIDTH = 8, // ADC Convertor Bit Precision
ACCUM_BITS = 10, // 2^ACCUM_BITS is decimation rate of accumulator
LPF_DEPTH_BITS = 3; // 2^LPF_DEPTH_BITS is decimation rate of averager
//input ports
input clk; // sample rate clock
input rstn; // async reset, asserted low
input analog_cmp ; // input from LVDS buffer (comparitor)
//output ports
output analog_out; // feedback to comparitor input RC circuit
output sample_rdy; // digital_out is ready
output [ADC_WIDTH-1:0] digital_out; // digital output word of ADC
//**********************************************************************
//
// Internal Wire & Reg Signals
//
//**********************************************************************
reg delta; // captured comparitor output
reg [ACCUM_BITS-1:0] sigma; // running accumulator value
reg [ADC_WIDTH-1:0] accum; // latched accumulator value
reg [ACCUM_BITS-1:0] counter; // decimation counter for accumulator
reg rollover; // decimation counter terminal count
reg accum_rdy; // latched accumulator value 'ready'
//***********************************************************************
//
// SSD 'Analog' Input - PWM
//
// External Comparator Generates High/Low Value
//
//***********************************************************************
always @ (posedge clk)
begin
delta <= analog_cmp; // capture comparitor output
end
assign analog_out = delta; // feedback to comparitor LPF
//***********************************************************************
//
// Accumulator Stage
//
// Adds PWM positive pulses over accumulator period
//
//***********************************************************************
always @ (posedge clk or negedge rstn)
begin
if( ~rstn )
begin
sigma <= 0;
accum <= 0;
accum_rdy <= 0;
end else begin
if (rollover) begin
// latch top ADC_WIDTH bits of sigma accumulator (drop LSBs)
accum <= sigma[ACCUM_BITS-1:ACCUM_BITS-ADC_WIDTH];
sigma <= delta; // reset accumulator, prime with current delta value
end else begin
if (&sigma != 1'b1) // if not saturated
sigma <= sigma + delta; // accumulate
end
accum_rdy <= rollover; // latch 'rdy' (to align with accum)
end
end
//***********************************************************************
//
// Box filter Average
//
// Acts as simple decimating Low-Pass Filter
//
//***********************************************************************
box_ave #(
.ADC_WIDTH(ADC_WIDTH),
.LPF_DEPTH_BITS(LPF_DEPTH_BITS))
box_ave (
.clk(clk),
.rstn(rstn),
.sample(accum_rdy),
.raw_data_in(accum),
.ave_data_out(digital_out),
.data_out_valid(sample_rdy)
);
//************************************************************************
//
// Sample Control - Accumulator Timing
//
//************************************************************************
always @(posedge clk or negedge rstn)
begin
if( ~rstn ) begin
counter <= 0;
rollover <= 0;
end
else begin
counter <= counter + 1; // running count
rollover <= &counter; // assert 'rollover' when counter is all 1's
end
end
endmodule
-
FPGA
+关注
关注
1625文章
21664浏览量
601727 -
芯片
+关注
关注
453文章
50378浏览量
421706 -
adc
+关注
关注
98文章
6430浏览量
544056
发布评论请先 登录
相关推荐
评论