前言
在近一年的AVM算法开发工作中,鱼眼相机去畸变的玩法前前后后基本过了个遍。从最开始的调用Opencv API,到后来由于算法需要自己实现、正向的undis2fish、反向的fish2undis、鱼眼上检测、undis上标定,总之遇到很多坑,还好都解决了。正好最近有同学在AVM的帖子下面问这个东西的实现,今天在这里讨论一下。本帖从鱼眼相机模型开始讲起,包含Opencv API调参、基于畸变表的参数拟合、鱼眼相机去畸变算法原理和C++实现。1. 鱼眼相机基础
1.1 鱼眼相机模型
鱼眼相机模型经过P点的入射光线没有透镜的话,本应交于相机成像平面的e点。然而,经过鱼眼相机的折射,光线会交于相机成像平面的d点,就产生了畸变,因此畸变图像整体上呈现出像素朝图像中心点聚集的态势。而去畸变,就是将折射到d点的点,重新映射回到e点,因此去畸变之后的图像与原始的鱼眼图像相比,仿佛是把向心聚集的像素又重新向四周铺展开来。下表中的两幅图分别为鱼眼图和去畸变之后的展开图:鱼眼相机的投影方式有很多种假设,例如等距投影、等立体角投影、正交投影、体视投影、线性投影。但是真实的鱼眼相机镜头并不完全遵循上述的这些模型假设。因此Kannala-Brandt提出了一种一般形式的估计,适用于不同类型的鱼眼相机:,这个也是纳入opencv中的鱼眼相机畸变模型。现在基本上默认鱼眼相机模型遵循上述公式。公式中的 为光线入射角,r()为上图中 od 的长度。1.2 基于畸变表的拟合方法
每个相机都有它固定的相机参数,包含内参、畸变系数。可以使用特定的相机标定方法,得到这些相机参数。通常,我们可以使用相机在不同位置、不同角度对着标定板拍摄几十张照片,然后用某种优化方法,计算出相机参数的最优解,例如张正友棋盘格标定法。然而,基于标定板的方法标定出的结果取决于光照是否充足、图像序列是否充足、全部的标定板序列是否能够充满整个图像幅面等因素。也就是说汽车标定的过程中需要人工摆放标定板的位置,指望算法工程师将产线上的工人培训得和他们一样专业显然不现实。大部分标定车间都是车开到标定场中间,十几秒标定出AVM系统所需要的参数,主要是4个鱼眼相机的外参,而非相机本身的参数(内参、畸变系数)。大概几十秒搞定一辆车,不可能有人工标定相机内参的过程。好在相机在出厂时厂家一般都会提供相机的必要参数- 内参
- 畸变表:
- opencv Kannala-Brandt相机畸变模型描述的是光线的入射角与其经过折射后在相机归一化平面上的投影点距离归一化平面中心的距离r
- 畸变表描述的是光线的入射角与其经过折射后在相机的真实的成像平面上的投影点距离成像中心的距离r
theta_input=data[:,0]*3.14/180 theta_fit=np.arctan(self.data[:,1]/0.95)#focal_lenth=0.95 distort_data,_=curve_fit(func1,theta_input,theta_fit) 综上,我们通过曲线拟合的方法得到了畸变参数。
2 Opencv API 鱼眼图像去畸变方法
Opencv提供了基于Kannala-Brandt数学模型的鱼眼去畸变方法: cv::initUndistortRectifyMap,该函数使用相机的内参和畸变参数计算出映射图mapx和mapy。2.1 基础鱼眼图像去畸变
其中入参K为鱼眼相机内参,D为,,, 畸变参数,R我们一般设置为单位阵,P为去畸变图像的相机内参,size为输出图像的大小;map1,map2为输出的映射图。@paramKCameraintrinsicmatrixf$cameramatrix{K}f$. @paramDInputvectorofdistortioncoefficientsf$distcoeffsfisheyef$. @paramRRectificationtransformationintheobjectspace:3x31-channel,orvector:3x1/1x3 1-channelor1x13-channel @paramPNewcameraintrinsicmatrix(3x3)ornewprojectionmatrix(3x4) @paramsizeUndistortedimagesize. @paramm1typeTypeofthefirstoutputmapthatcanbeCV_32FC1orCV_16SC2.SeeconvertMaps() fordetails. @parammap1Thefirstoutputmap. @parammap2Thesecondoutputmap. */ CV_EXPORTS_WvoidinitUndistortRectifyMap(InputArrayK,InputArrayD,InputArrayR,InputArrayP, constcv::Size&size,intm1type,OutputArraymap1,OutputArraymap2); 相机内参矩阵表示如下,其中 表示相机焦距 f 与相机cmos参数 的比值,这个 的物理意义为每个像素的实际长度,单位可以是mm/像素。 表示相机主点,即光心与图像平面相交的坐标,单位为像素。那么问题来了,为什么既需要鱼眼相机的内参,又需要输出图像的相机内参呢,它们之间是什么关系呢?最开始的时候,很多同学肯定是把这两个相机内参设置成一样的,即都设置成鱼眼相机的大小,如下图所示。代码中去畸变之后图像的内参是从鱼眼相机内参深拷贝过来的。
cv::MatR=cv::eye(3,3,CV_32F); cv::Matmapx_open,mapy_open; cv::Matintrinsic_undis; fish_intrinsic.copyTo(intrinsic_undis); //intrinsic_undis.at<float>(0,2)*=2; //intrinsic_undis.at<float>(1,2)*=2; cv::initUndistortRectifyMap( fish_intrinsic,m_undis2fish_params,R,intrinsic_undis, cv::Size(intrinsic_undis.at<float>(0,2)*2, intrinsic_undis.at<float>(1,2)*2), CV_32FC1,mapx_open,mapy_open); cv::Mattest; cv::remap(disImg[3],test,mapx_open,mapy_open,cv::INTER_LINEAR); 左侧为鱼眼图,右侧为去畸变图
2.2 相机主点参数调节
我们发现,上图中右侧去畸变之后虽然图像幅面大小与鱼眼图相同都是1280*960,但是可视范围变得很小。标定所需要的大方格没有包含进来。因此,需要进一步调参,下面代码中将去畸变之后图像相机参数中的主点 , 扩大为原来的两倍,且initUndistortRectifyMap函数输出的去畸变图像大小size是与去畸变之后图像相机参数主点相关的,也就是图像大小同样跟着放大了两倍。记住一点:initUndistortRectifyMap函数中的size参数一般都是与去畸变之后图像的相机参数中主点大小强相关的。这一点在后面C++代码手撕算法流程时候会提到。cv::MatR=cv::eye(3,3,CV_32F); cv::Matmapx_open,mapy_open; cv::Matintrinsic_undis; fish_intrinsic.copyTo(intrinsic_undis); intrinsic_undis.at<float>(0,2)*=2; intrinsic_undis.at<float>(1,2)*=2; cv::initUndistortRectifyMap( fish_intrinsic,m_undis2fish_params,R,intrinsic_undis, cv::Size(intrinsic_undis.at<float>(0,2)*2, intrinsic_undis.at<float>(1,2)*2), CV_32FC1,mapx_open,mapy_open); cv::Mattest; cv::remap(disImg[3],test,mapx_open,mapy_open,cv::INTER_LINEAR); 去畸变图像相机参数的主点扩大了两倍,同时生成图像大小扩到两倍从上图中我们依然不能获得到右侧完整的黑色大方格,因此需要进一步扩大去畸变后图像相机主点位置以及生成图像的分辨率:
cv::MatR=cv::eye(3,3,CV_32F); cv::Matmapx_open,mapy_open; cv::Matintrinsic_undis; fish_intrinsic.copyTo(intrinsic_undis); intrinsic_undis.at<float>(0,2)*=4; intrinsic_undis.at<float>(1,2)*=4; cv::initUndistortRectifyMap( fish_intrinsic,m_undis2fish_params,R,intrinsic_undis, cv::Size(intrinsic_undis.at<float>(0,2)*2, intrinsic_undis.at<float>(1,2)*2), CV_32FC1,mapx_open,mapy_open); cv::Mattest; cv::remap(disImg[3],test,mapx_open,mapy_open,cv::INTER_LINEAR); 现在我已经把去畸变图像相机内参的主点扩大为fish相机内参的4倍了,生成图像的长宽也放大了4倍,像素数量总体放大16倍,这样才勉强把大方格完全显示出来。我们知道提取角点需要用到图像处理算法,显然对这么大的图像做处理的效率非常低。
2.3 相机f参数调节
到目前位置,我们只讨论了相机参数中主点的调参,想要解决上述问题还需要调整相机的 ,先不说理论,直接看调参结果,这里我们代码中只调整了去畸变图像相机参数中的,使它们缩小为原来的1/4。cv::MatR=cv::eye(3,3,CV_32F); cv::Matmapx_open,mapy_open; cv::Matintrinsic_undis; fish_intrinsic.copyTo(intrinsic_undis); intrinsic_undis.at<float>(0,0)/=4; intrinsic_undis.at<float>(1,1)/=4; /*intrinsic_undis.at<float>(0,2)*=4; intrinsic_undis.at<float>(1,2)*=4;*/ cv::initUndistortRectifyMap( fish_intrinsic,m_undis2fish_params,R,intrinsic_undis, cv::Size(intrinsic_undis.at<float>(0,2)*2, intrinsic_undis.at<float>(1,2)*2), CV_32FC1,mapx_open,mapy_open); cv::Mattest; cv::remap(disImg[3],test,mapx_open,mapy_open,cv::INTER_LINEAR); 左侧为鱼眼图,右侧为去畸变图,分辨率均为1280*960从图中可以看出,当我们仅将相机焦距缩小时,可以看到更多的东西。虽然去畸变之后的图像很小只有1280*960,但是却可以看到完整的方格。本节我们讨论了opencv API initUndistortRectifyMap函数的主点和f参数调节对于去畸变图像的影响,接下来的第3节,我们将会从去畸变算法原理入手,C++实现一波该算法。做这件事的原因很简单:opencv只提供了整张图像从undis2fish的映射,在avm的视角转换中,我们需要进行单个像素点的undis2fish,因此,我们需要自己实现一波这个去畸变过程。结论:缩小相机焦距可以使FOV增大,在更小分辨率的图像上呈现出更多的内容,看上去也是更加清晰。
3 鱼眼去畸变算法及其实现
畸变映射关系鱼眼去畸变的算法实现就是遍历去畸变图像上的每一个点,寻找它们在鱼眼图像上的像素点坐标,计算它们之间的映射关系C++实现:/* func:warpfromdistorttoundistort @paramf_dx:f/dx @paramf_dy:f/dy @paramlarge_center_h:undisimagecentery @paramlarge_center_w:undisimagecenterx @paramfish_center_h:fishimagecentery @paramfish_center_w:fishimagecenterx @paramundis_param:factoryparam @paramx:inputcoordinatexontheundisimage @paramy:inputcoordinateyontheundisimage */ cv::Vec2fwarpUndist2Fisheye(floatfish_scale,floatf_dx,floatf_dy,floatlarge_center_h, floatlarge_center_w,floatfish_center_h, floatfish_center_w,cv::Vec4dundis_param,floatx, floaty){ f_dx*=fish_scale; f_dy*=fish_scale; floaty_=(y-large_center_h)/f_dy;//normalizedplane floatx_=(x-large_center_w)/f_dx; floatr_=static_cast<float>(sqrt(pow(x_,2)+pow(y_,2))); //Lookuptable /*intnum=atan(r_)/atan(m_d)*1024; floatangle_distorted=m_Lut[num];*/ floatangle_undistorted=atan(r_);//theta floatangle_undistorted_p2=angle_undistorted*angle_undistorted; floatangle_undistorted_p3=angle_undistorted_p2*angle_undistorted; floatangle_undistorted_p5=angle_undistorted_p2*angle_undistorted_p3; floatangle_undistorted_p7=angle_undistorted_p2*angle_undistorted_p5; floatangle_undistorted_p9=angle_undistorted_p2*angle_undistorted_p7; floatangle_distorted=static_cast<float>(angle_undistorted+ undis_param[0]*angle_undistorted_p3+ undis_param[1]*angle_undistorted_p5+ undis_param[2]*angle_undistorted_p7+ undis_param[3]*angle_undistorted_p9); //scale floatscale=angle_distorted/(r_+0.00001f);//scale=r_disonthecameraimgplane //divider_undisonthenormalizedplane cv::Vec2fwarp_xy; floatxx=(x-large_center_w)/fish_scale; floatyy=(y-large_center_h)/fish_scale; warpPointOpencv(warp_xy,fish_center_h,fish_center_w,xx,yy,scale); returnwarp_xy; } voidwarpPointOpencv(cv::Vec2f&warp_xy,floatmap_center_h,floatmap_center_w, floatx_,floaty_,floatscale){ warp_xy[0]=x_*scale+map_center_w; warp_xy[1]=y_*scale+map_center_h; } 针对上述代码,我们由浅入深地讲述算法流程
3.1 基础的鱼眼去畸变(主点相关)
鱼眼相机成像模型上述代码中令fish_scale为1,先讨论最简单的,即让去畸变图像相机参数中的, 大小与鱼眼图相同,对照鱼眼相机模型这张图和代码,我们来梳理一下算法流程:算法流程- 首先,对于图像平面上的像素点,要用相机的内参f、dx、dy,将其转化到归一化平面,对应上图中的e点。并计算其距离归一化平面中心的距离r_。并计算对应的入射角,即上图中的 theta角
- 根据Kannala-Brandt的鱼眼模型公式,使用事先拟合的k1,k2,k3,k4参数计算归一化平面上去畸变之后点的位置r_distorted
- 在归一化平面上计算去畸变前后点位置的比值:r_distorted/r_
- 3中计算的比值为归一化平面上,同样可以应用到相机成像平面以及图像平面上。因此,可以对图像平面上的像素点,乘上这个系数,就得到了鱼眼图上像素点的位置。
3.2 进阶的 鱼眼去畸变(如何调整f)
正如第2节所说,我们需要在很小的图像上呈现出大方格。这就需要调整f,这个过程不太容易理解,我们画个图来理解一下:相机焦距调整示意图上图中相机的真实焦距为f,假设cmos长度不变,我们只是把成像平面放在了 f/2 的位置上,显然调整焦距后的相机FOV更大,能够看到的东西越多。同理,对于标定车间中的大方格,假设我们调参使得 , 缩小一定的倍数,理论上就可以看到更多的内容。将相机内参 f 缩小为 f/2 意味着我们将相机的cmos推导距离相机光心 f/2 处,在这个平面上做映射。算法流程如下:- 将相机焦距调整为 f/2 后,使用新的焦距将 点转换到归一化平面上去,得到
- 使用去畸变参数 ,,, 计算其畸变状态下在归一化平面上的位置
- 使用前两步的结果,计算去畸变前后线段的长度比例scale
- 根据已知的 与 前面计算的scale计算出
- *2将点映射到 f 平面上,就得到了在 f/2 成像平面上的去畸变映射关系。
- 当我们调整 f 使其更小时,相同的内容集中于更小的分辨率上,对于后续的图像处理算法会更友好。很多锯齿和模糊的问题都能得到改善
- 在鱼眼上检测棋盘格角点要比在去畸变图上检测棋盘格角点更加准确,因为去畸变后大方格被拉伸的很严重。这个结论的依据是重投影误差以及将鱼眼检测到的角点坐标映射到去畸变图上后与直接在畸变图上的位置做视觉上的比较。
3.3 Opencv API undistortPoints的实现
前面所有讨论的都是undis2fish的过程。在实际的AVM标定中,通常是对鱼眼相机检测角点,因为去畸变之后图像拉伸效果严重,提取的角点不准确。参考张正友标定法标定相机参数时,也是在获取到的图像上直接提取角点,解一个全局优化问题。因此,除了前面讲到的undis2fish映射过程以外,我们还需要实现fish2undis的过程。这个过程Opencv提供了函数undistortPoints,即输入为鱼眼相机上点的坐标,输出为去畸变图像上点的坐标。这个过程是一个解方程的问题,用到非线性优化,速度很慢。因此我们通过畸变表,构建了一个多项式,通过反向拟合的方法,提前拟合出fish2undis的方程系数:#forward self.distor_para,_=curve_fit(self.func,self.data[:,0],self.data[:,1]) #inverse f_inverse_para,_=curve_fit(self.func_inverse,self.data[:,1],self.data[:,0]) 计算fish2undis的过程与undis2fish(3.1,3.2)的过程略有不同,但都是寻找 与 之间的映射关系,因为 f 平面才是我们真实拿到的fish图,我们最终还是要在这个原始的fish图上找点。实现代码:
cv::Vec2fCalibrateInit::warpFisheye2Undist(floatfish_scale,floatf_dx,floatf_dy,floatundis_center_h, floatundis_center_w,floatfish_center_h, floatfish_center_w,cv::Vec4dundis_param,floatx, floaty){ //f_dx*=fish_scale; //f_dy*=fish_scale; floaty_=(y-fish_center_h)/f_dy;//normalizedplane floatx_=(x-fish_center_w)/f_dx; floatr_distorted=static_cast<float>(sqrt(pow(x_,2)+pow(y_,2))); floatr_distorted_p2=r_distorted*r_distorted; floatr_distorted_p3=r_distorted_p2*r_distorted; floatr_distorted_p4=r_distorted_p2*r_distorted_p2; floatr_distorted_p5=r_distorted_p2*r_distorted_p3; floatangle_undistorted=static_cast<float>(r_distorted+ undis_param[0]*r_distorted_p2+ undis_param[1]*r_distorted_p3+ undis_param[2]*r_distorted_p4+ undis_param[3]*r_distorted_p5); //scale floatr_undistorted=tanf(angle_undistorted); floatscale=r_undistorted/(r_distorted+0.00001f);//scale=r_disonthecameraimgplane //divider_undisonthenormalizedplane cv::Vec2fwarp_xy; floatxx=(x-fish_center_w)*fish_scale; floatyy=(y-fish_center_h)*fish_scale; warpPointInverse(warp_xy,undis_center_h,undis_center_w,xx,yy,scale); returnwarp_xy; } voidCalibrateInit::Vec2f&warp_xy,floatmap_center_h,floatmap_center_w, floatx_,floaty_,floatscale){ warp_xy[0]=x_*scale+map_center_w; warp_xy[1]=y_*scale+map_center_h; }
总结
本贴讨论的内容为鱼眼相机图像基于畸变表的处理方法,AVM中畸变的运用非常灵活,所以笔者必须对它进行实现才可以灵活运用。据笔者所知有些AVM供应商的鱼眼畸变参数并不一定是依赖畸变表,有的也会拿来一批摄像头自行标定。具体那种方法更优,可能需要更多同行同学的实验和讨论得到结论。
审核编辑 :李倩
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
模型
+关注
关注
1文章
3158浏览量
48701 -
AVM
+关注
关注
0文章
12浏览量
10706 -
相机成像
+关注
关注
0文章
15浏览量
5639
原文标题:AVM环视系统:鱼眼相机去畸变算法及实战
文章出处:【微信号:3D视觉工坊,微信公众号:3D视觉工坊】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
环视全景摄像头应用在那些场合和起到作用有哪些
,技术上有其局限性,如上文所述的图像失真等问题,以及鱼眼环视全景摄像头的超广角效果,虽然能监控大范围面积,但相对来说,它的焦距很短,使得侦测范围大受限制,大约在半径5米内可以看清人脸,更远的话就会显得模糊
发表于 05-23 10:30
汽车环视系统设计完整硬件平台设计方案
一、项目背景 1.1 研究背景 本项目研究内容是开展汽车环视系统((AVM)技术与产品的研究与开发,通过驾驶员实时实景环视辅助系统,提高汽车
发表于 11-20 15:34
•19次下载
KUS集团目前已研发出3D AVM全景环视系统
3D AVM 全景环视系统,在汽车所有视场范围安装4到8个广角摄像头,收集同一时刻的多路视频影像,处理成一幅360°的鸟瞰图。通过中控显示屏进行显示,让驾驶员直观、清晰查看车辆周边路况信息。帮助驾驶员轻松停泊车辆,并有效减少刮蹭
基于除法畸变模型的镜头线性标定方法
针对鱼眼镜头的高精度标定需求,提岀一种基于除法畸变模型的线性标定方法。通过除法模型将题转换为线性方程组求解问题相机畸变中心后对畸变方程矩阵进
发表于 05-19 11:39
•7次下载
一种基于相位靶标的摄像机标定迭代畸变补偿算法
相机畸变是影响相机标定精度的关键因素。由于畸变补偿不准确,传统的标定方法不能满足要求较高标定精度的测量系统的要求。本文提出了一种基于迭代
360全景环视原理说明
总述全景环视系统是通过安装在汽车前、后、左、右四个广角摄像头采集的车辆四周的实时画面,通过摄像头内参标定,外参标定,鱼眼图像畸变矫正,全景模
发表于 01-17 09:51
•24次下载
评论