0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

通过机器学习发现规则

星星科技指导员 来源:embedded 作者:Juras Juršėnas 2023-05-04 11:13 次阅读

早在1868年,乔治·布尔的妻子就转述了他对机器能力的看法:

在他们之间,他们用无法回答的事实逻辑最终证明,计算和推理,就像编织和耕作一样,不是为了人的灵魂,而是为了铁和木的巧妙组合。如果你花时间做机器可以比你自己做得快的工作,那应该只是为了锻炼。

自从克劳德·香农(Claude Shannon)应用布尔的工作来构建第一块电路板以来,我们已经走了很长一段路,这预示着计算机时代的到来。正如他所预测的那样,现在大多数计算和推理链都是通过“铁和木的巧妙组合”完成的。我们刚刚意识到硅在完成这项工作方面可能会更好一些。

布尔自己一生所做的事情将是他认为机器不可能做到的。他正在研究支配思想本身的规则。換句話說,他正在走向更高層次的推理,超越日常生活的規律計算。

虽然我们离能够以类似于布尔和其他人的方式利用哲学的人工智能还很远,但我们正在接近一种更微妙的计算思维形式。机器学习可以用来发现生活某些领域的不直观规则。

机器学习的能力

关于机器学习将如何取代所有其他解决问题的模式已经写了很多。最流行的建议之一是,我们应该放弃基于规则的机器学习方法。

在我看来,这种观点过于理想化。用机器学习解决问题可以通过基于规则的方法解决,这是对资源的浪费。模型,尤其是更复杂的模型,可能非常昂贵,并且需要大量维护才能保持准确性。

在一个拥有无限资源(包括计算和财政)的理想世界中,这些差异无关紧要。然而,在商业中,我们总是在严格定义的范围内工作,因为任何资源的使用也意味着机会成本。

因此,我们最好选择使用基于规则的方法解决所有问题。但是,这会遇到其他复杂的问题,例如并非所有问题都具有可以通过规则解决的已定义边界。

机器学习擅长解决两种类型的挑战。任何需要概率答案的问题都可能由模型而不是基于规则的任何问题来完成。机器学习非常有价值的另一个领域是规则不明确的时候。

在商业中,我们有时可能不确定如何回答具体问题。例如,自助结账流程应遵循哪些规则?构建这样的功能几乎有无限的可能性,但我们一直在寻求最大化结果。换句话说,我们希望自助结账会带来最多的转化。

来自机器学习模型的推理

一个常见的反对意见可能是,一些机器学习模型,如深度神经网络,本质上是黑匣子。我们永远不确定引擎盖下发生了什么,所以从它们中提取规则就像没有它们一样多的猜测。

幸运的是,在商业应用中,我们不需要像逻辑学家或科学家那样精确,他们试图揭示思想、语言或宇宙的基本块。为我们指明正确方向的见解足以为以某种方式做事创造理由。

换句话说,在构建预测自助服务客户系统最佳结果的模型时,我们并没有试图定义一些不变的人类行为法则。我们只是在研究一系列公认的不断变化的情况,并试图找出解决这些问题的最佳方法。

因此,回到同一个例子,随机森林算法,从事件会话和用户活动中提供足够的数据,可以概述最具预测性的输出。这些将指示在自助服务过程中受哪些用户影响最大。

这些产出可能不是开创性的,甚至不是广泛的,因为它们只在相当有限的环境中工作。但是,对于工程师,设计师和内容编写者来说,它们足以执行优化,从而带来更好的转换。

然后,可以将这些见解转换为基于规则的算法。因此,机器学习模型可以为我们提供一种方法来发现我们可以在业务实践中实施的环境规则。

结论

希望机器学习将取代基于规则的系统是没有根据的。后者通常比复杂的机器学习模型更高效、更便宜。由于企业总是对效率视而不见,基于规则的系统将继续存在。

与通常认为的不同,机器学习可用于补充基于规则的系统。虽然有可能将一个系统组合成一个系统,但前者也可以用来获得洞察力,然后可以实施到后者中。

最后,机器学习不应该被认为是解决技术问题的万能药。这是应该深思熟虑使用的众多可能性之一。其中之一是确保我们在其他系统中做出更好的决策。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电路板
    +关注

    关注

    140

    文章

    4868

    浏览量

    97148
  • 人工智能
    +关注

    关注

    1789

    文章

    46615

    浏览量

    236966
  • 机器学习
    +关注

    关注

    66

    文章

    8344

    浏览量

    132288
收藏 人收藏

    评论

    相关推荐

    如何通过XGBoost解释机器学习

    本文为大家介绍用XGBoost解释机器学习。 这是一个故事,关于错误地解释机器学习模型的危险以及正确解释所带来的价值。如果你发现梯度提升或随
    发表于 10-12 11:48 1786次阅读
    如何<b class='flag-5'>通过</b>XGBoost解释<b class='flag-5'>机器</b><b class='flag-5'>学习</b>

    【下载】《机器学习》+《机器学习实战》

    `1.机器学习简介:机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器
    发表于 06-01 15:49

    什么是机器学习? 机器学习基础入门

    中,我将概述机器学习,它是如何工作的,以及为什么它对嵌入式工程师很重要。什么是机器学习机器学习
    发表于 06-21 11:06

    模糊Horn子句规则及其发现算法

    模糊Horn子句规则可以用自然语言来表达人类知识。但是,发现模糊Horn子句规则及其蕴含度是比较困难的。该文从逻辑的观点出发,定义模糊Horn子句规则、支持度、蕴含度及其相关
    发表于 04-01 08:58 15次下载

    基于LCS和LS-SVM的多机器人强化学习

    本文提出了一种LCS和LS-SVM相结合的多机器人强化学习方法,LS-SVM获得的最优学习策略作为LCS的初始规则集。LCS通过与环境的交互
    发表于 01-09 14:43 0次下载

    机器学习机器发现区别在哪?

    机器学习现在可谓是炙手可热。只要应用机器学习,就可以有效丰富数据和知识,促进有价值的任务自动化,包括感知、分类和数值预测等。而它的“兄弟”——机器
    发表于 05-18 22:32 2175次阅读

    机器学习技术带你领略重要的生物医学发现

    杜克大学化学和物理学教授和一群来自世界各地的科学家,与谷歌大脑的研究人员合作,使用最先进的机器学习算法来发现这些珍贵的晶体。他们的工作可以使研究人员更容易地绘制出蛋白质结构图,从而加速药物的
    的头像 发表于 07-19 17:33 3395次阅读

    科学家们发明了一种机器人化学家 意图通过发现新的药物

    科学家们发明了一种机器人化学家,可以通过机器学习技术彻底改变新分子的发现方式。科学家也希望通过
    发表于 11-05 10:26 1292次阅读

    通过Python就能读懂机器学习

    具体来说有四个方面的介绍,包括机器学习的定义、机器学习的起源,以及进化反向、机器学习的分类和类别
    的头像 发表于 05-14 14:31 2559次阅读
    <b class='flag-5'>通过</b>Python就能读懂<b class='flag-5'>机器</b><b class='flag-5'>学习</b>

    人工智能和机器学习的力量

    人工智能和机器学习可以在这里交付真正的价值。当涉及到识别和预测某些类型的模式时,机器学习提供了比人类更好的能力。这些新工具还可以超越基于规则
    的头像 发表于 05-11 17:47 1900次阅读

    中国机器学习开发平台前景未来可期

    机器学习是一种数据分析方法,通过使用迭代学习数据的算法,机器学习可以使电脑在没有被明确编程看哪里
    的头像 发表于 07-03 11:45 2738次阅读

    基于DNN与规则学习机器翻译算法综述

    基于DNN与规则学习机器翻译算法综述
    发表于 06-29 15:44 33次下载

    机器学习和深度学习的区别

    的区别。 1. 机器学习 机器学习是指通过数据使机器能够自动地
    的头像 发表于 08-17 16:11 4124次阅读

    机器学习算法总结 机器学习算法是什么 机器学习算法优缺点

    机器学习算法总结 机器学习算法是什么?机器学习算法优缺点?
    的头像 发表于 08-17 16:11 1779次阅读

    机器学习技术是什么?机器学习技术在新型电力系统安全稳定中的应用

    机器学习技术是什么?机器学习技术在新型电力系统安全稳定中的应用 机器学习技术是指从大量的数据和经
    的头像 发表于 08-17 16:30 1048次阅读