0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

你知道你写的代码是怎样跑起来的吗(上)

jf_78858299 来源:开发内功修炼 作者:开发内功修炼 2023-05-05 14:36 次阅读

今天我们来思考一个简单的问题,一个程序是如何在 Linux 上执行起来的?

我们就拿全宇宙最简单的 Hello World 程序来举例。

#include 
int main()
{
   printf("Hello, World!\\n");
   return 0;
}

我们在写完代码后,进行简单的编译,然后在 shell 命令行下就可以把它启动起来。

# gcc main.c -o helloworld
# ./helloworld
Hello, World!

那么在编译启动运行的过程中都发生了哪些事情了呢?今天就让我们来深入地了解一下。

一、理解可执行文件格式

源代码在编译后会生成一个可执行程序文件,我们先来了解一下编译后的二进制文件是什么样子的。

我们首先使用 file 命令查看一下这个文件的格式。

# file helloworld
helloworld: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), ...

file 命令给出了这个二进制文件的概要信息,其中 ELF 64-bit LSB executable 表示这个文件是一个 ELF 格式的 64 位的可执行文件。x86-64 表示该可执行文件支持的 cpu 架构。

LSB 的全称是 Linux Standard Base,是 Linux 标准规范。其目的是制定一系列标准来增强 Linux 发行版的兼容性。

ELF 的全称是 Executable Linkable Format,是一种二进制文件格式。Linux 下的目标文件、可执行文件和 CoreDump 都按照该格式进行存储。

ELF 文件由四部分组成,分别是 ELF 文件头 (ELF header)、Program header table、Section 和 Section header table。

图片

接下来我们分几个小节挨个介绍一下。

1.1 ELF 文件头

ELF 文件头记录了整个文件的属性信息。原始二进制非常不便于观察。不过我们有趁手的工具 - readelf,这个工具可以帮我们查看 ELF 文件中的各种信息。

我们先来看一下编译出来的可执行文件的 ELF 文件头,使用 --file-header (-h) 选项即可查看。

# readelf --file-header helloworld
ELF Header:
  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 
  Class:                             ELF64
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           Advanced Micro Devices X86-64
  Version:                           0x1
  Entry point address:               0x401040
  Start of program headers:          64 (bytes into file)
  Start of section headers:          23264 (bytes into file)
  Flags:                             0x0
  Size of this header:               64 (bytes)
  Size of program headers:           56 (bytes)
  Number of program headers:         11
  Size of section headers:           64 (bytes)
  Number of section headers:         30
  Section header string table index: 29

ELF 文件头包含了当前可执行文件的概要信息,我把其中关键的几个拿出来给大家解释一下。

  • Magic:一串特殊的识别码,主要用于外部程序快速地对这个文件进行识别,快速地判断文件类型是不是 ELF
  • Class:表示这是 ELF64 文件
  • Type:为 EXEC 表示是可执行文件,其它文件类型还有 REL(可重定位的目标文件)、DYN(动态链接库)、CORE(系统调试 coredump文件)
  • Entry point address:程序入口地址,这里显示入口在 0x401040 位置处
  • Size of this header:ELF 文件头的大小,这里显示是占用了 64 字节

以上几个字段是 ELF 头中对 ELF 的整体描述。另外 ELF 头中还有关于 program headers 和 section headers 的描述信息。

  • Start of program headers:表示 Program header 的位置
  • Size of program headers:每一个 Program header 大小
  • Number of program headers:总共有多少个 Program header
  • Start of section headers: 表示 Section header 的开始位置。
  • Size of section headers:每一个 Section header 的大小
  • Number of section headers: 总共有多少个 Section header

1.2 Program Header Table

在介绍 Program Header Table 之前我们展开介绍一下 ELF 文件中一对儿相近的概念 - Segment 和 Section。

ELF 文件内部最重要的组成单位是一个一个的 Section。每一个 Section 都是由编译链接器生成的,都有不同的用途。例如编译器会将我们写的代码编译后放到 .text Section 中,将全局变量放到 .data 或者是 .bss Section中。

但是对于操作系统来说,它不关注具体的 Section 是啥,它只关注这块内容应该以何种权限加载到内存中,例如读,写,执行等权限属性。因此相同权限的 Section 可以放在一起组成 Segment,以方便操作系统更快速地加载。

由于 Segment 和 Section 翻译成中文的话,意思太接近了,非常不利于理解。所以本文中我就直接使用 Segment 和 Section 原汁原味的概念,而不是将它们翻译成段或者是节,这样太容易让人混淆了。

Program headers table 就是作为所有 Segments 的头信息,用来描述所有的 Segments 的。

使用 readelf 工具的 --program-headers(-l)选项可以解析查看到这块区域里存储的内容。

# readelf --program-headers helloworld
Elf file type is EXEC (Executable file)
Entry point 0x401040
There are 11 program headers, starting at offset 64

Program Headers:
  Type           Offset             VirtAddr           PhysAddr
     FileSiz            MemSiz              Flags  Align
  PHDR           0x0000000000000040 0x0000000000400040 0x0000000000400040
     0x0000000000000268 0x0000000000000268  R      0x8
  INTERP         0x00000000000002a8 0x00000000004002a8 0x00000000004002a8
     0x000000000000001c 0x000000000000001c  R      0x1
   [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
  LOAD           0x0000000000000000 0x0000000000400000 0x0000000000400000
     0x0000000000000438 0x0000000000000438  R      0x1000
  LOAD           0x0000000000001000 0x0000000000401000 0x0000000000401000
     0x00000000000001c5 0x00000000000001c5  R E    0x1000
  LOAD           0x0000000000002000 0x0000000000402000 0x0000000000402000
     0x0000000000000138 0x0000000000000138  R      0x1000
  LOAD           0x0000000000002e10 0x0000000000403e10 0x0000000000403e10
     0x0000000000000220 0x0000000000000228  RW     0x1000
  DYNAMIC        0x0000000000002e20 0x0000000000403e20 0x0000000000403e20
     0x00000000000001d0 0x00000000000001d0  RW     0x8
  NOTE           0x00000000000002c4 0x00000000004002c4 0x00000000004002c4
     0x0000000000000044 0x0000000000000044  R      0x4
  GNU_EH_FRAME   0x0000000000002014 0x0000000000402014 0x0000000000402014
     0x000000000000003c 0x000000000000003c  R      0x4
  GNU_STACK      0x0000000000000000 0x0000000000000000 0x0000000000000000
     0x0000000000000000 0x0000000000000000  RW     0x10
  GNU_RELRO      0x0000000000002e10 0x0000000000403e10 0x0000000000403e10
     0x00000000000001f0 0x00000000000001f0  R      0x1

 Section to Segment mapping:
  Segment Sections...
   00     
   01     .interp 
   02     .interp .note.gnu.build-id .note.ABI-tag .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt 
   03     .init .plt .text .fini 
   04     .rodata .eh_frame_hdr .eh_frame 
   05     .init_array .fini_array .dynamic .got .got.plt .data .bss 
   06     .dynamic 
   07     .note.gnu.build-id .note.ABI-tag 
   08     .eh_frame_hdr 
   09     
   10     .init_array .fini_array .dynamic .got

上面的结果显示总共有 11 个 program headers。

对于每一个段,输出了 Offset、VirtAddr 等描述当前段的信息。Offset 表示当前段在二进制文件中的开始位置,FileSiz 表示当前段的大小。Flag 表示当前的段的权限类型, R 表示可都、E 表示可执行、W 表示可写。

在最下面,还把每个段是由哪几个 Section 组成的给展示了出来,比如 03 号段是由“.init .plt .text .fini” 四个 Section 组成的。

1.3 Section Header Table

和 Program Header Table 不一样的是,Section header table 直接描述每一个 Section。这二者描述的其实都是各种 Section ,只不过目的不同,一个针对加载,一个针对链接。

使用 readelf 工具的 --section-headers (-S)选项可以解析查看到这块区域里存储的内容。

# readelf --section-headers helloworld
There are 30 section headers, starting at offset 0x5b10:

Section Headers:
  [Nr] Name              Type             Address           Offset
    Size              EntSize          Flags  Link  Info  Align
  ......
  [13] .text             PROGBITS         0000000000401040  00001040
    0000000000000175  0000000000000000  AX       0     0     16
  ......
  [23] .data             PROGBITS         0000000000404020  00003020
    0000000000000010  0000000000000000  WA       0     0     8
  [24] .bss              NOBITS           0000000000404030  00003030
    0000000000000008  0000000000000000  WA       0     0     1
  ......    
Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
  L (link order), O (extra OS processing required), G (group), T (TLS),
  C (compressed), x (unknown), o (OS specific), E (exclude),
  l (large), p (processor specific)

结果显示,该文件总共有 30 个 Sections,每一个 Section 在二进制文件中的位置通过 Offset 列表示了出来。Section 的大小通过 Size 列体现。

在这 30 个Section中,每一个都有独特的作用。我们编写的代码在编译成二进制指令后都会放到 .text 这个 Section 中。另外我们看到 .text 段的 Address 列显示的地址是 0000000000401040。回忆前面我们在 ELF 文件头中看到 Entry point address 显示的入口地址为 0x401040。这说明,程序的入口地址就是 .text 段的地址。

另外还有两个值得关注的 Section 是 .data 和 .bss。代码中的全局变量数据在编译后将在在这两个 Section 中占据一些位置。如下简单代码所示。

//未初始化的内存区域位于 .bss 段
int data1 ;     

//已经初始化的内存区域位于 .data 段
int data2 = 100 ;  

//代码位于 .text 段
int main(void)
{
 ...
}

1.4 入口进一步查看

接下来,我们想再查看一下我们前面提到的程序入口 0x401040,看看它到底是啥。我们这次再借助 nm 命令来进一步查看一下可执行文件中的符号及其地址信息。-n 选项的作用是显示的符号以地址排序,而不是名称排序。

# nm -n helloworld
     w __gmon_start__
     U __libc_start_main@@GLIBC_2.2.5
     U printf@@GLIBC_2.2.5
......                 
0000000000401040 T _start
......
0000000000401126 T main

通过以上输出可以看到,程序入口 0x401040 指向的是 _start 函数的地址,在这个函数执行一些初始化的操作之后,我们的入口函数 main 将会被调用到,它位于 0x401126 地址处。

二、用户进程的创建过程概述

在我们编写的代码编译完生成可执行程序之后,下一步就是使用 shell 把它加载起来并运行之。一般来说 shell 进程是通过fork+execve来加载并运行新进程的。一个简单加载 helloworld 命令的 shell 核心逻辑是如下这个过程。

// shell 代码示例
int main(int argc, char * argv[])
{
 ...
 pid = fork();
 if (pid==0){ // 如果是在子进程中
  //使用 exec 系列函数加载并运行可执行文件
  execve("helloworld", argv, envp);
 } else {
  ...
 }
 ...
}

shell 进程先通过 fork 系统调用创建一个进程出来。然后在子进程中调用 execve 将执行的程序文件加载起来,然后就可以调到程序文件的运行入口处运行这个程序了。

在上一篇文章[《Linux进程是如何创建出来的?》]中,我们详细介绍过了 fork 的工作过程。这里我们再简单过一下。

这个 fork 系统调用在内核入口是在 kernel/fork.c 下。

//file:kernel/fork.c
SYSCALL_DEFINE0(fork)
{
 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
}

在 do_fork 的实现中,核心是一个 copy_process 函数,它以拷贝父进程(线程)的方式来生成一个新的 task_struct 出来。

//file:kernel/fork.c
long do_fork(...)
{
 //复制一个 task_struct 出来
 struct task_struct *p;
 p = copy_process(clone_flags, stack_start, stack_size,
    child_tidptr, NULL, trace);

 //子任务加入到就绪队列中去,等待调度器调度
 wake_up_new_task(p);
 ...
}

在 copy_process 函数中为新进程申请 task_struct,并用当前进程自己的地址空间、命名空间等对新进程进行初始化,并为其申请进程 pid。

//file:kernel/fork.c
static struct task_struct *copy_process(...)
{
 //复制进程 task_struct 结构体
 struct task_struct *p;
 p = dup_task_struct(current);
 ...

 //进程核心元素初始化
 retval = copy_files(clone_flags, p);
 retval = copy_fs(clone_flags, p);
 retval = copy_mm(clone_flags, p);
 retval = copy_namespaces(clone_flags, p);
 ...

 //申请 pid && 设置进程号
 pid = alloc_pid(p->nsproxy->pid_ns);
 p->pid = pid_nr(pid);
 p->tgid = p->pid;
 ......
}

执行完后,进入 wake_up_new_task 让新进程等待调度器调度。

不过 fork 系统调用只能是根据当的 shell 进程再复制一个新的进程出来。这个新进程里的代码、数据都还是和原来的 shell 进程的内容一模一样。

要想实现加载并运行另外一个程序,比如我们编译出来的 helloworld 程序,那还需要使用到 execve 系统调用。

三. Linux 可执行文件加载器

其实 Linux 不是写死只能加载 ELF 一种可执行文件格式的。它在启动的时候,会把自己支持的所有可执行文件的解析器都加载上。并使用一个 formats 双向链表来保存所有的解析器。其中 formats 双向链表在内存中的结构如下图所示。

我们就以 ELF 的加载器 elf_format 为例,来看看这个加载器是如何注册的。在 Linux 中每一个加载器都用一个 linux_binfmt 结构来表示。其中规定了加载二进制可执行文件的 load_binary 函数指针,以及加载崩溃文件 的 core_dump 函数等。其完整定义如下

//file:include/linux/binfmts.h
struct linux_binfmt {
 ...
 int (*load_binary)(struct linux_binprm *);
 int (*load_shlib)(struct file *);
 int (*core_dump)(struct coredump_params *cprm);
};

其中 ELF 的加载器 elf_format 中规定了具体的加载函数,例如 load_binary 成员指向的就是具体的 load_elf_binary 函数。这就是 ELF 加载的入口。

//file:fs/binfmt_elf.c
static struct linux_binfmt elf_format = {
 .module  = THIS_MODULE,
 .load_binary = load_elf_binary,
 .load_shlib = load_elf_library,
 .core_dump = elf_core_dump,
 .min_coredump = ELF_EXEC_PAGESIZE,
};

加载器 elf_format 会在初始化的时候通过 register_binfmt 进行注册。

//file:fs/binfmt_elf.c
static int __init init_elf_binfmt(void)
{
 register_binfmt(&elf_format);
 return 0;
}

而 register_binfmt 就是将加载器挂到全局加载器列表 - formats 全局链表中。

//file:fs/exec.c
static LIST_HEAD(formats);

void __register_binfmt(struct linux_binfmt * fmt, int insert)
{
 ...
 insert ? list_add(&fmt->lh, &formats) :
   list_add_tail(&fmt->lh, &formats);
}

Linux 中除了 elf 文件格式以外还支持其它格式,在源码目录中搜索 register_binfmt,可以搜索到所有 Linux 操作系统支持的格式的加载程序。

# grep -r "register_binfmt" *
fs/binfmt_flat.c: register_binfmt(&flat_format);
fs/binfmt_elf_fdpic.c: register_binfmt(&elf_fdpic_format);
fs/binfmt_som.c: register_binfmt(&som_format);
fs/binfmt_elf.c: register_binfmt(&elf_format);
fs/binfmt_aout.c: register_binfmt(&aout_format);
fs/binfmt_script.c: register_binfmt(&script_format);
fs/binfmt_em86.c: register_binfmt(&em86_format);

将来在 Linux 在加载二进制文件时会遍历 formats 链表,根据要加载的文件格式来查询合适的加载器。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Linux
    +关注

    关注

    87

    文章

    11204

    浏览量

    208697
  • 代码
    +关注

    关注

    30

    文章

    4721

    浏览量

    68213
  • helloworld
    +关注

    关注

    0

    文章

    13

    浏览量

    4355
收藏 人收藏

    评论

    相关推荐

    MotorControl Workbench生成的代码是开环的吗,为什么电机跑起来很容易受到外力导致停机?

    请问各位高手 MotorControl Workbench 生成的代码是开环的吗?为什么我的电机跑起来很容易受到外力导致停机,我想让它不停机,请问有什么好的办法吗 ?
    发表于 03-21 07:12

    请问HVMotorCtrl+PfcKit_v1.7/HVPM_sensorless_2833x代码能不能让电机跑起来?需要修改哪些参数?

    ,现在想测试一下代码能不能让电机跑起来,从level1——level6,不知道从哪个level可以让电机跑起来,听说比较危险,不知道需要改什
    发表于 06-13 05:19

    请问stm32f103工程代码如何在stm32f407芯片跑起来

    如题:1、stm32f103工程代码如何在stm32f407芯片跑起来?2、要做哪些修改?
    发表于 09-04 09:27

    如何让的ESP32跑起来

    ESP32是了国内乐鑫科技推出的Wifi&蓝牙物联网MCU,而最近项目正好在用ESP32,所以我们今天就来分享下,如何让的ESP32跑起来,并应用于更多实际项目。1ESP32简...
    发表于 07-16 06:57

    怎样让自己编译的uboot跑起来

    小目标:让自己编译的uboot跑起来参考:wiki.friendlyarm.com/wiki/index.php/NanoPi_NEO首先熟悉一下板子和开发流程。维基主要参考《使用全志原厂BSP
    发表于 11-08 06:37

    程序能跑起来就是很好的c代码

    程序能跑起来并不见得代码就是很好的c代码了,衡量代码的好坏应该从以下几个方面来添加链接描述看:海风教育投诉1,
    发表于 11-23 08:00

    在板子系统跑起来后怎么查看屏幕驱动

    请问一下,在板子系统跑起来后怎么查看屏幕驱动
    发表于 01-10 06:24

    如何让u-boot跑起来

    如何让u-boot跑起来
    发表于 01-26 08:26

    如何让的ESP32跑起来

    ESP32是了国内乐鑫科技推出的Wifi&蓝牙物联网MCU,而最近项目正好在用ESP32,所以我们今天就来分享下,如何让的ESP32跑起来,并应用于更多实际项目。1ESP32简介ESP32
    发表于 02-10 06:25

    STM32如何区分程序跑起来用的是HSE还是HSI呢?

    方法去区别HSE和HSI的话,我的问题就来了:烧到030f4并测到晶振有起振的程序(main下死循环),烧到030rb,晶振不起振了,但是通过仿真发现程序还在跑的。所以问一下大家,是怎么确定HSE跑起来了?由于程序会认为改错配置,导致跑HSI,所以问大家
    发表于 05-05 10:47

    Zynq 7015 linux跑起来之导入之BOOT.bin生成详解

    本文主要介绍Zynq 7015 linux跑起来之导入之BOOT.bin生成,具体的跟随小编一起来了解一下。
    的头像 发表于 06-27 10:01 7390次阅读

    FreeRTOS_003 _让系统在板子跑起来

    FreeRTOS_003_让系统在板子跑起来
    的头像 发表于 03-14 11:25 2731次阅读
    FreeRTOS_003 _让系统在板子<b class='flag-5'>上</b><b class='flag-5'>跑起来</b>

    windows安装ubuntu并让pioneer1应用程序跑起来的过程

    本文介绍在windows下安装ubuntu并且让pioneer1的应用程序跑起来的全过程。虽然安装ubuntu不是本文重点,但是还是啰嗦地一遍吧。
    的头像 发表于 10-23 10:41 2322次阅读
    windows安装ubuntu并让pioneer1应用程序<b class='flag-5'>跑起来</b>的过程

    代码是如何跑起来的?

    今天我们来思考一个简单的问题,一个程序是如何在 Linux 执行起来的?
    的头像 发表于 12-08 15:50 858次阅读

    知道代码怎样跑起来的吗(下)

    今天我们来思考一个简单的问题,一个程序是如何在 Linux 执行起来的? 我们就拿全宇宙最简单的 Hello World 程序来举例。
    的头像 发表于 05-05 14:36 438次阅读
    <b class='flag-5'>你</b><b class='flag-5'>知道</b><b class='flag-5'>你</b><b class='flag-5'>写</b>的<b class='flag-5'>代码</b>是<b class='flag-5'>怎样</b><b class='flag-5'>跑起来</b>的吗(下)