0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅谈DIPIPM™的健康管理

三菱电机半导体 来源:三菱电机半导体 2023-05-08 14:36 次阅读

讲座导语

DIPIPM是双列直插型智能功率模块的简称,由三菱电机于1997年正式推向市场,迄今已在家电、工业和汽车空调等领域获得广泛应用。本讲座主要介绍DIPIPM的基础、功能、应用和失效分析技巧,旨在帮助读者全面了解并正确使用该产品

多轴机器人应用中DIPIPM的健康管理

上节回顾:第14讲:DIPIPM的健康管理(1)

Q我看现在很多生产线会用机器人替代工人,唰唰唰的,很帅。能不能讲讲机器人呢?

可以啊,伺服电机的驱动也是一个比较典型的应用案例。

A多轴机器人在工业控制领域是一个比较时髦的应用,也是工业4.0,中国制造2025里的重要内容。图11就是一个典型的多轴机器人。其一共有6个受伺服电机控制的转动轴,所以也被称为6轴机器人。

前一节我们是针对一个已经设计好的门机变频器进行校验。看它是否能满足多年的运行的条件。这次我们换个方向。如何从设计之初就考虑寿命问题。如何确定设计一款伺服驱动器能满足多年运行的要求。

首先,重中之重的第一步是确定一下基本条件,就像表2这样。

表2 伺服驱动器相关应用条件

264cb904-ec67-11ed-90ce-dac502259ad0.jpg

然后是运行周期。同样是运行50000小时,是以10s一个循环走还是以20s一个循环走,对循环次数的影响非常明显。多轴机器人的最常见运动以急加速、急减速为特征的往复运动。图12为伺服驱动器的运行模式示意图。

266dcaf4-ec67-11ed-90ce-dac502259ad0.png

图12 伺服驱动器的运行模式示意图

其中:

黄色:速度曲线

灰色:输出电流曲线。

T1:加速时间。一般此时伺服驱动器会以允许的最大电流工作。我们假设T1=3s。

T2:整个运行循环的时间。我们假设T2=20s

那么在50000小时的寿命中,我们的伺服驱动器需要运行50000小时/20s=9M次

根据图5的功率循环曲线和表2的1000ppm的损坏率要求。那么单次运行中ΔTj-c需要低于25℃。

可能有些读者要说了,你都整了这么多了,模块用哪个啊?是时候介绍我们的主角了。接下来有请我们新一代明星,PSS50S73F6。它是三菱电机第7代小型DIPIPM。在兼容以前同封装器件的基础上,又把最大结温提升到了175℃。让我们看看,在表2的条件下PSS50S73F6可以跑到多少电流。

269ab51e-ec67-11ed-90ce-dac502259ad0.jpg

图13 PSS50S73F6仿真界面

答案来了。Io=24Arms。也就是说PSS50S73F6在上述这些工况下,每10s跑一个24A有效值的电流,可以跑50000小时。

另外需要说明的是这个电流是在无限散热支持下,需要重复运行的电流。怎么理解?

伺服驱动器并不具备无限散热能力。设计条件中的Ts=90℃是需要实践验证的,你设计的散热器、风道、风扇是否足以将相应的热量带走。

既然是需要重复运行,那就涉及到周期,多久跑一次。如果周期更短,周期数更多,相应需要更低的ΔTj-c和更低的运行电流。

对于伺服驱动器来说除了需要重复运行的电流,还有不需要重复运行的电流,比如堵转。此类工况的仿真主要涉及到Tjmax的仿真。待会我们来详细说说。

我们现在中场休息。广告之后马上回来。

好了,我们下半场开始。下半场我们详细讲讲堵转工况的仿真。

首先什么是堵转?字面意义上理解,电机由于外部机械原因导致不能转动。没错,这是被动的堵转。相应的还会有主动的“堵转”。当然一般也不会叫这个名字。一般会被叫做‘驱动器使能’或者‘力矩保持’等等。两者的异同主要如表3所示。

表3 主动堵转和被动堵转的异同

26af6a86-ec67-11ed-90ce-dac502259ad0.jpg

这一节呢,我们主要讲一讲由于机械原因导致的被动堵转。当这种堵转发生时,我们需要以怎么样的方式去设置保护点。我们还是罗列一下工作条件,如表4。

表4 堵转工况仿真条件

26d1ea98-ec67-11ed-90ce-dac502259ad0.jpg

Q你不都说是输出直流电了么,怎么还有这么多交流电的仿真参数?

很好的问题。这么干的主要原因是如果以直流电的形式来仿真,需要提供一个IGBT的占空比。这个值在设计之初,很难明确获得。但是如果以低频交流电的形式来仿真,就可以有效避免这个问题。通过降低输出频率,利用交流波形波峰这一段来近似仿真为直流。当然由于是低频交流电,对应的输出电压有效值较低,会导致调制率也较低。所以一般就用M=0.1来仿真。

A好了,我们来看一下仿真结果,图14。由于PSS50S73F6最大结温为175℃,它的最大运行结温可以到150℃。当Io=23.5Arms或者说Io=33.2Apeak时,ΔTj-c(max)=52.36℃,Tj(max)=150.87℃。这基本上就是我们的堵转保护的极限值。

26f5a082-ec67-11ed-90ce-dac502259ad0.jpg

图14 PSS50S73F6堵转仿真

Q等等,刚才长期稳定运行,你算出来是24Arms。这个堵转怎么才23.5Arms(33.2Apeak)?你是不是想摸鱼?

小伙子可以啊,这么快就发现坑了。没错,堵转的保护点是有可能低于长期稳定运行的电流。因为我只有3个IGBT在干活,他们有6个。保护点低点很合理啊。

A既然如此,我就再说说这其中的其他几个坑。

首先,交流还是直流?驱动器中常见的电流计算方式是电流峰值/1.414=交流有效值。当在交流情况下,这样的计算没有问题。但是如果出现堵转,情况就不一样了。我们来看表5。发现问题了么?你以为是10Arms的交流电,实际上可能是14Arms/peak的直流电。

表5 交流电还是直流电

271dba90-ec67-11ed-90ce-dac502259ad0.jpg

接下来是仿真频率的问题。首先当Fo<10Hz以下时,ΔTj-c(max)和Tj(max)逐渐变大到不可忽视的程度。其次选用多少频率进行上述仿真,各个公司习惯不太一样。我的习惯是伺服驱动器用1Hz来仿真,通用变频器用5Hz来仿真。

刚才仿真出来的ΔTj-c(max)=52.36℃,对应循环次数大约是10万次。对于单次堵转来说无所谓。但是如果该工况是需要重复出现的,可以考虑限制ΔTj-c(max)≤40℃。对应的寿命大约为100万次。

最后是散热器温度事情。如前所述,Ts=90℃是一个理想散热下能够维持的温度。但是没有一个散热系统是理想的。如果堵转只发生1-2s,我们可以忽略散热器温度的变化。毕竟150℃到175℃还有25℃的余量。但是如果这个堵转要持续10s,散热器温度的变化不可忽视。在这10s里,散热器温度会逐渐升高,并推动Tj逐渐升高,直到最终损坏。

好了,就这样吧,下课。

关于三菱电机

三菱电机创立于1921年,是全球知名的综合性企业。在2022年《财富》世界500强排名中,位列351名。截止2022年3月31日的财年,集团营收44768亿日元(约合美元332亿)。作为一家技术主导型企业,三菱电机拥有多项专利技术,并凭借强大的技术实力和良好的企业信誉在全球的电力设备、通信设备、工业自动化电子元器件、家电等市场占据重要地位。尤其在电子元器件市场,三菱电机从事开发和生产半导体已有60余年。其半导体产品更是在变频家电、轨道牵引、工业与新能源、电动汽车、模拟/数字通讯以及有线/无线通讯等领域得到了广泛的应用。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    211

    文章

    28390

    浏览量

    206957
  • 伺服电机
    +关注

    关注

    85

    文章

    2046

    浏览量

    57827
  • 三菱电机
    +关注

    关注

    0

    文章

    177

    浏览量

    20641
  • 功率模块
    +关注

    关注

    10

    文章

    466

    浏览量

    45098
  • 健康管理
    +关注

    关注

    0

    文章

    16

    浏览量

    7936

原文标题:第14讲:DIPIPM™的健康管理(2)

文章出处:【微信号:三菱电机半导体,微信公众号:三菱电机半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    DIPIPM™故障排查及失效判定方法

    本章是DIPIPM技术讲座的第4章,前面3章中分别介绍了DIPIPM的发展历史、结构与功能、电路选型及应用。本
    的头像 发表于 09-15 15:40 3830次阅读
    <b class='flag-5'>DIPIPM</b>™故障排查及失效判定方法

    深度学习在预测和健康管理中的应用

    深度学习在预测和健康管理中的应用综述摘要深度学习对预测和健康管理(PHM)引起了浓厚的兴趣,因为它具有强大的表示能力,自动化的功能学习能力以及解决复杂问题的一流性能。本文调查了使用深度
    发表于 07-12 06:46

    三菱电机第4代DIPIPM产品及应用等详细说明

    本文档的主要内容详细介绍的是三菱电机第4代DIPIPM产品及应用等详细说明包括了:超小型第四代DIPIPM,小型第四代DIPIPM,新超小型第四代DIPIPM-PS219AX系列,DI
    发表于 10-11 08:00 0次下载
    三菱电机第4代<b class='flag-5'>DIPIPM</b>产品及应用等详细说明

    DIPIPM的典型应用电路

    DIPIPM是双列直插型智能功率模块的简称,由三菱电机于1997年正式推向市场,迄今已在家电、工业和汽车空调等领域获得广泛应用。本讲座主要介绍DIPIPM的基础、功能、应用和失效分析技巧,旨在帮助读者全面了解并正确使用该产品。
    的头像 发表于 12-02 15:14 3100次阅读

    DIPIPM应用电路

    DIPIPM对于输入信号的最小脉宽有限制。如果输入信号脉宽(开通和关断)小于其限制值,DIPIPM可能不响应或不能正常工作。对于其具体限制值,请参考相应的规格书。(不同电流额定值的产品,最小脉宽可能是不同的。)
    的头像 发表于 01-13 16:15 2473次阅读

    DIPIPM™的PCB设计(1)

    DIPIPM是双列直插型智能功率模块的简称,由三菱电机于1997年正式推向市场,迄今已在家电、工业和汽车空调等领域获得广泛应用。本讲座主要介绍DIPIPM的基础、功能、应用和失效分析技巧,旨在帮助读者全面了解并正确使用该产品。
    的头像 发表于 02-06 11:35 1535次阅读

    DIPIPM™的PCB设计(2)

    DIPIPM是双列直插型智能功率模块的简称,由三菱电机于1997年正式推向市场,迄今已在家电、工业和汽车空调等领域获得广泛应用。本讲座主要介绍DIPIPM的基础、功能、应用和失效分析技巧,旨在帮助读者全面了解并正确使用该产品。
    的头像 发表于 02-12 09:45 2184次阅读

    浅谈DIPIP的健康管理

    DIPIPM是双列直插型智能功率模块的简称,由三菱电机于1997年正式推向市场,迄今已在家电、工业和汽车空调等领域获得广泛应用。本讲座主要介绍DIPIPM的基础、功能、应用和失效分析技巧,旨在帮助读者全面了解并正确使用该产品。
    的头像 发表于 04-14 16:23 911次阅读

    变频空调应用中DIPIPM健康管理

    DIPIPM是双列直插型智能功率模块的简称,由三菱电机于1997年正式推向市场,迄今已在家电、工业和汽车空调等领域获得广泛应用。本讲座主要介绍DIPIPM的基础、功能、应用和失效分析技巧,旨在帮助读者全面了解并正确使用该产品。
    的头像 发表于 05-29 11:03 993次阅读
    变频空调应用中<b class='flag-5'>DIPIPM</b>的<b class='flag-5'>健康</b><b class='flag-5'>管理</b>

    DIPIPM的失效解析流程

    DIPIPM是双列直插型智能功率模块的简称,由三菱电机于1997年正式推向市场,迄今已在家电、工业和汽车空调等领域获得广泛应用。本讲座主要介绍DIPIPM的基础、功能、应用和失效分析技巧,旨在帮助读者全面了解并正确使用该产品。
    的头像 发表于 11-03 16:23 807次阅读
    <b class='flag-5'>DIPIPM</b>的失效解析流程

    DIPIPM™的历史及未来发展(3)

    DIPIPM™的历史及未来发展(3)
    的头像 发表于 12-04 17:37 567次阅读
    <b class='flag-5'>DIPIPM</b>™的历史及未来发展(3)

    IGBT/IPM/DIPIPM定义及应用基础(2)

    IGBT/IPM/DIPIPM定义及应用基础(2)
    的头像 发表于 12-05 10:26 1293次阅读
    IGBT/IPM/<b class='flag-5'>DIPIPM</b>定义及应用基础(2)

    IGBT/IPM/DIPIPM定义及应用基础(1)

    IGBT/IPM/DIPIPM定义及应用基础(1)
    的头像 发表于 12-05 14:09 1105次阅读
    IGBT/IPM/<b class='flag-5'>DIPIPM</b>定义及应用基础(1)

    DIPIPM™市场失效分析(1)

    DIPIPM是双列直插型智能功率模块的简称,由三菱电机于1997年正式推向市场,迄今已在家电、工业和汽车空调等领域获得广泛应用。本讲座主要介绍DIPIPM的基础、功能、应用和失效分析技巧,旨在帮助读者全面了解并正确使用该产品。
    的头像 发表于 12-22 15:15 585次阅读
    <b class='flag-5'>DIPIPM</b>™市场失效分析(1)