0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

锂离子电池中SEI的形核生长机制研究

清新电源 来源:Battery Insider 2023-05-08 15:12 次阅读

“近日,清华大学张强教授、中科院化学所文锐研究员和北京理工大学闫崇研究员在《JACS》期刊报道了锂离子电池中固体电解质界面(SEI)的形核生长模式的研究。本工作研究了两种典型的SEI:第一种是锂盐(如LiFSI)分解形成的无机SEI,其遵循混合2D/3D生长模式,形核过电势越大,2D的成分越高;另一种是有机成膜剂(如EC)分解形成的有机SEI,其严格遵循2DI的形核生长模式,能够有效地覆盖电极表面并成膜。根据这一原理,通过在电池化成初期施加大电流脉冲来诱导无机SEI的二维生长,从而提升了SEI的成膜均匀性和电池的性能。该基础研究为二次电池中快充、长循环、高容量电极SEI界面的精确调控提供了理论指导原则。”

第一部分:研究背景 固体电解质界面膜(SEI)是锂离子电池中“最重要也最神秘”的组分。因为它的存在,石墨负极可以在远超电解液电化学还原窗口的电位下稳定工作,从而提升电池的能量密度和循环寿命。SEI的厚度通常为5~50 nm。SEI虽然在电池中的含量极低,但是对提升电池的稳定性、功率性能和安全性起到了至关重要的作用。过去的四十年间,大量研究致力于揭示SEI的化学本质、结构以及离子传输机理。然而,还没有厘清SEI的初始形核和生长模式。事实上,SEI的初始形核和生长不但是理解SEI所有理化性质的前提,也决定了SEI的结构和形貌,从而决定了其对电极的粘附性和长循环中的稳定性。

传统的异相形核生长理论将形核分为瞬时(instantaneous,I)和连续(progressive,P)模式。前者表明形核位点在初始一瞬间即全部形成,后者表明形核位点在核的生长过程中持续形成。后续核的生长则可以按照维度分为二维(2D)和三维(3D)生长。如果能够将原位观测和经典形核理论有机结合,就有望从更微观尺度解析SEI的形核生长模式。

第二部分:研究内容:

二次电池中普遍存在异相形核和生长过程。例如,锂在集流体上的形核生长和Li2S在碳基底上的形核生长分别对应了锂硫电池充放电过程中的两个关键反应,其对锂硫电池的性能起到了决定性的作用。大量研究者对这两种形核过程的动力学和生长维度进行了定量研究。然而,定量研究SEI的形核和生长过程却遇到以下三方面的挑战:1. SEI形成过程所占容量极小,难以准确捕捉电化学信号。2. 实际电化学研究中SEI呈现的的电流-时间曲线都是单调递减的,所以无法套入基于恒压条件下的单峰电流-时间曲线所代表的经典形核模型。3. 原位尺度上难以直接观察SEI的形核和生长。

研究团队早期采用石墨作为工作电极,引入弱溶剂化电解液,探究了阴离子在石墨材料上的形核与生长机制,详细解读如下。 Angew. Chem.(VIP论文):锂电池中SEI的渐进形核和二维生长机制 因石墨的比表面积较小,在研究有机诱导界面的形核与生长时存在一定困难。为了克服上述难题,本工作采用了大比表面积乙炔黑(carbon black,CB)负极“放大”SEI形成反应、弱溶剂化电解液(weakly solvating electrolyte,WSE)诱导单峰电流-时间曲线、高分辨原位电化学原子力显微镜(electrochemical atomic force microscopy,EC-AFM)技术原位观测SEI形核过程,解决了以上三个方面的难题,成功解析了无机和有机成膜剂诱导的SEI形核和生长过程。

0e1d0558-ed5e-11ed-90ce-dac502259ad0.png

图1. SEI在CB电极上生长的电化学曲线。(a)Li | CB电池的首圈放电曲线。(b)WSE电解液的恒压电流-时间曲线。(c)WSE+0.2 EC电解液的恒压电流-时间曲线。(d)WSE+0.5 EC电解液的恒压电流-时间曲线。

恒流放电条件下,WSE体系中都会呈现一个形核过电位,预示着发生了SEI形核过程。这一形核过电位的存在和恒压计时电流曲线中的单峰是一一对应的。由于ECDMC中没有出现这一形核过电位,所以其恒压计时电流曲线是单调递减的,无法采用经典模型描述。

0e3c430a-ed5e-11ed-90ce-dac502259ad0.png

图2. 原位EC-AFM观测WSE中LiFSI诱导的无机SEI在HOPG电极上的形核生长过程。(a)不同电位下无量纲时间-电流曲线及其与传统形核模式(3DI,3DP,2DI,2DP)的对比。原位AFM观测HOPG电极在(b)OCP,(c–e)1.00 V下的图片。(f)e的3D AFM图片。(b–d)中标尺为400 nm,(e)中为600 nm。

WSE中无机SEI的形成主要依靠LiFSI的分解,且属于2DI/3DP混合形核生长模式。LiFSI诱导的SEI具有纳米颗粒的形状,其首先在HOPG的端面聚集,随后逐渐连结成项链状,覆盖端平面。形核的过电位越大,形核过程越接近2DI。

0e558d4c-ed5e-11ed-90ce-dac502259ad0.png

图3. 原位EC-AFM观测WSE+ 0.2EC中的EC诱导的有机SEI在HOPG电极上的形核生长过程。(a–b)WSE+0.2 EC和WSE+0.5 EC在不同电位下无量纲时间-电流曲线及其与传统形核模式(3DI,3DP,2DI,2DP)的对比。原位AFM观测HOPG电极在(c)OCP,(d)1.11–0.82 V,(e–g)0.50 V下的图片。(h)d–g中沿所示虚线的高度剖面信息。(i)g的3D AFM图片。图中所有标尺均为400 nm。

WSE+0.2 EC中有机SEI的形成主要依靠EC的分解,属于2DI形核生长模式。EC诱导的SEI成膜状,首先在HOPG的端面聚集,随后向HOPG的基平面二维延伸,厚度不变,逐渐覆盖整个HOPG表面。

0e5fe42c-ed5e-11ed-90ce-dac502259ad0.png

图4. HOPG电极上SEI形成的示意图。(a)原始的HOPG电极。(b–c)LiFSI诱导的无机SEI颗粒形核和后续生长过程。(d–e)EC诱导的有机SEI薄膜形核和后续生长过程。

0e6bbb6c-ed5e-11ed-90ce-dac502259ad0.png

图5. 通过调控SEI的形核和生长模式改善LFP |石墨电池性能。(a)LFP |石墨电池的容量和库伦效率在1.0 C循环过程中的变化。(b)LFP |石墨电池在第50圈(实线)和第300圈(虚线)时的电压曲线。在每圈充电前,WSE+pulse电池会以一个4.0 C的脉冲电流充至3.3 V并恒压直至电流小于0.1 C。随后按照正常充放电协议进行循环。

由上述结果可知,WSE+0.2 EC中EC的2DI成膜质量远高于LiFSI纳米颗粒的混合2D/3D成核模式,因此所得的SEI能更好地保护电极,呈现出更加优异的电化学性能。然而,通过在SEI形成初期采用大电流脉冲制造大过电位,能够诱导LiFSI分解并以二维的方式成膜,所得SEI更均匀、成膜质量更好。因此,WSE+pulse电池的容量保持率能够提升至和WSE+0.2 EC相当。

第三部分:结论

本工作基于计时电流法和原位电化学AFM观测,定量解析了两种典型SEI(无机和有机)的形核和生长过程。锂盐(如LiFSI)分解形成的无机SEI遵循混合2D/3D生长模式,其形核过电势越大,2D的成分越高;有机成膜剂(如EC)分解形成的有机SEI严格遵循2DI的形核生长模式,能够有效地覆盖电极表面并成膜。根据该原理,提出了通过在电池化成初期施加大电流脉冲来诱导无机SEI二维生长的可行性,从而提升了SEI的成膜均匀性和电池性能。本工作以一个全新的视角探讨了SEI的形核和生长过程,揭示了该过程中又一深层次的细节,为后续精准调控电化学装置中的快充、长循环及高稳定界面开辟了新的思路。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3215

    浏览量

    77555
  • 电解液
    +关注

    关注

    10

    文章

    840

    浏览量

    23067
  • AFM
    AFM
    +关注

    关注

    0

    文章

    58

    浏览量

    20164

原文标题:清华&化学所&北理工JACS:锂离子电池中SEI的形核生长机制研究

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    石墨负极在锂离子电池中的发展与储锂机制

    近日,清华大学张强教授团队总结并展望了石墨负极界面的调控方法及其对锂离子电池电化学性能的影响机制,重点介绍了石墨负极在锂离子电池中的发展与储锂机制、炭负极的表界面表征方法与界面调控方法
    的头像 发表于 10-28 11:28 522次阅读
    石墨负极在<b class='flag-5'>锂离子电池中</b>的发展与储锂<b class='flag-5'>机制</b>

    通信电源系统的守护者:锂离子电池

    在通信电源系统中,为保障通信电源系统不间断工作,锂离子电池作为备用电源,成为其重要的守护者。一套配置了锂离子电池的通信电源系统,当市电停电时,锂离子电池立即取代市电为负载设备供电,以确保负载能不
    的头像 发表于 06-15 08:05 164次阅读
    通信电源系统的守护者:<b class='flag-5'>锂离子电池</b>

    锂离子电池的工作原理、特点及应用

    锂离子电池,作为现代高性能电池的代表,自其诞生以来就受到了广泛的关注和应用。它以其独特的优势,如高能量密度、长寿命、无记忆效应等,迅速占领了电池市场的大部分份额。本文将详细介绍锂离子电池
    的头像 发表于 05-21 16:46 3170次阅读

    典型锂离子电池充电器电路图分享

    锂离子电池充电器是一种专门用于为锂离子电池充电的设备。由于锂离子电池对充电器的要求较高,需要保护电路,所以锂离子电池充电器通常都有较高的控制精密度,能够对
    的头像 发表于 02-07 18:23 6846次阅读
    典型<b class='flag-5'>锂离子电池</b>充电器电路图分享

    锂离子电池生产过程中湿度控制的重要性

    锂离子电池在生产过程中对湿度要求非常高,主要是因为水分失控或粗化控制,会对电解液产生不良影响。电解液是电池中离子传输的载体,由锂盐和有机溶剂组成,是锂离子电池获得高电压、高比能等优点的
    的头像 发表于 01-25 17:10 1177次阅读
    <b class='flag-5'>锂离子电池</b>生产过程中湿度控制的重要性

    什么是锂离子电池锂离子电池有记忆效应吗?

    什么是锂离子电池锂离子电池有记忆效应吗? 锂离子电池是一种通过锂离子在正负极之间的反复迁移实现电荷储存和释放的电池。它是一种高能量密度、容
    的头像 发表于 01-10 16:31 1640次阅读

    锂离子电池的充放电原理  锂离子电池和三元锂电池哪个好

     锂离子电池的工作原理是基于锂离子在正极和负极之间的迁移,利用化学反应将化学能转化为电能的物理过程。
    发表于 01-10 15:23 1923次阅读

    什么是锂离子电池失效?锂离子电池失效如何有效分析检测?

    什么是锂离子电池失效?锂离子电池失效如何有效分析检测? 锂离子电池失效是指电池容量的显著下降或功能完全丧失,导致电池无法提供持久且稳定的电能
    的头像 发表于 01-10 14:32 870次阅读

    锂离子电池的缺点和解决方案

    锂离子电池是目前广泛应用于电子产品、电动工具、电动车辆等领域的重要能量储存技术,但它也存在一些缺点。本文将详细介绍锂离子电池的缺点,并提出相应的解决方案。 首先,锂离子电池存在容量衰减问题。随着
    的头像 发表于 12-20 17:01 2156次阅读

    锂离子电池的工作原理和结构

    锂系电池分为锂电池锂离子电池。手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为锂电池。而真正的锂
    的头像 发表于 12-12 16:50 2502次阅读
    <b class='flag-5'>锂离子电池</b>的工作原理和结构

    短路对锂离子电池的影响

    主要原因。以下将详细介绍短路对锂离子电池的影响。 首先,一个短路往往会导致电流瞬间增加到非常高的水平。锂离子电池中的电流一般都是经过控制的,如果电流超过了电池设计允许的范围,就会造成电池
    的头像 发表于 12-08 15:55 2088次阅读

    内部应力缓解促成的用于锂离子电池的高性能富硅微粒负极

    对于微米级颗粒硅负极来说,循环过程中严重的颗粒粉碎阻碍了其在锂离子电池中的实际应用。
    的头像 发表于 12-08 09:32 854次阅读
    内部应力缓解促成的用于<b class='flag-5'>锂离子电池</b>的高性能富硅微粒负极

    改变我们生活的锂离子电池 | 第一讲:什么是锂离子电池?专家谈锂离子电池的工作原理和特点

    改变我们生活的锂离子电池 | 第一讲:什么是锂离子电池?专家谈锂离子电池的工作原理和特点
    的头像 发表于 12-06 15:12 785次阅读
    改变我们生活的<b class='flag-5'>锂离子电池</b> | 第一讲:什么是<b class='flag-5'>锂离子电池</b>?专家谈<b class='flag-5'>锂离子电池</b>的工作原理和特点

    改变我们生活的锂离子电池 | 第二讲:锂离子电池的优点和充电时的注意事项

    改变我们生活的锂离子电池 | 第二讲:锂离子电池的优点和充电时的注意事项
    的头像 发表于 12-05 18:10 490次阅读
    改变我们生活的<b class='flag-5'>锂离子电池</b> | 第二讲:<b class='flag-5'>锂离子电池</b>的优点和充电时的注意事项

    改变我们生活的锂离子电池 | 第三讲:获得诺贝尔奖以及锂离子电池的普及史

    改变我们生活的锂离子电池 | 第三讲:获得诺贝尔奖以及锂离子电池的普及史
    的头像 发表于 12-05 17:13 533次阅读
    改变我们生活的<b class='flag-5'>锂离子电池</b> | 第三讲:获得诺贝尔奖以及<b class='flag-5'>锂离子电池</b>的普及史