0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅谈拉曼光谱原理

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-05-09 07:26 次阅读

wKgZomRZhRqAVdgCAABQQogMRXo27.jpeg

拉曼散射是基于光子与分子中的电子云及分子键结的相互作用[图1(a)]。对于自发拉曼效应,光子将分子从基态激发到一个虚拟的能量状态。当激发态的分子放出一个光子后并返回到一个不同于基态的旋转或振动状态。在基态与新状态间的能量差会使得释放光子的频率与激发光线的波长不同。

入射的激光可以表达为:

wKgaomRZhRqAMIHbAAABr6l8lwA124.png

公式 1

其中ω为分子振动的频率

则分子的诱导电偶极矩可以表达为:

wKgZomRZhRuAXsbXAAAB1ljHB3I897.png

公式 2

其中α为分子极化率

由于分子的振动,原子核的位置可以表达为:

wKgaomRZhRuAT8YmAAABkh2OBvE376.png

公式 3

其中ν为分子的振动频率

分子的极化率与分子的原子核的位置有关。可以表达为:

公式 4

因此诱导偶极矩可以进一步表达为:

wKgZomRZhRuAAAJjAAACyBfPNKM484.png

公式 5

把方程1带入方程5,可以得到:

wKgaomRZhRuAIO6gAAAHK4rhsy4281.png

公式 6

光经过样本产生的散射与P成正比。所以从P我们就可以直接得到散射光谱的组分。

第一项为瑞丽散射,散射光子的频率与入射光子的频率相同。

第二项与第三项统称为拉曼散射,散射光子的频率与入射光子频率不同,频率的差等于分子的振动频率。其中第二项为斯托克斯散射,当分子与入射光子作用时,分子处于基态,在发生拉曼散射以后,分子在入射光作用下激发到振动激发态。因此斯托克思散射光子的频率低于入射光子的频率。而第三项对应的是反斯托克斯拉曼散射,当分子与入射光子作用时,分子处于振动激发态,当发生拉曼散射以后,分子回到基态。分子振动的能量转移到散射的光子上,因此,反斯托克斯光子的频率高于入射光子的频率。图1(b)展示了瑞丽散射与拉曼散射的能级图。

wKgZomRZhRyAKS5cAABLWpngGoY315.png

图1 (a)拉曼散射与瑞丽散射 (b)拉曼散射、瑞丽散射与红外吸收的能级图

拉曼信号十分微弱,大概每10E7~10E8个入射的光子,只有1个光子发生拉曼散射过程[1]。因而拉曼光谱技术对于探测器的灵敏度有较高的要求。此外拉曼散射信号的强度是与散射光波长的四次方成反比。

#拉曼光谱的信息

由于分子内一般会有多个分子键,每个分子键也会有多种振动模式(伸展,摆动,剪式运动等)。不同分子键的不同的振动模式的振动频率不同,因而分子的拉曼光谱是一个多峰的光谱。图2是老鼠骨头的拉曼光谱[2],可以看到分子内不同的化学键可以在拉曼光谱中清楚的区分开来。

wKgaomRZhRyAYUoQAABqjqQ4efA12.jpeg

图2 老鼠皮质骨拉曼光谱

拉曼峰的强度正比于激发区域内被激发的分子键个数,此外拉曼光谱的峰值与强度还受到环境因素的影响。因此从拉曼光谱中,我们可以得到分子的种类与浓度,样本所受到的压力以及样本的相与形态等信息。

拉曼光谱图的坐标横轴单位一般是波数(cm-1),是通过1/拉曼信号波长-1/激发光波长然后将单位换算为cm-1得到的。比如785nm激发时,1010.22nm的拉曼信号对应着2840cm-1的拉曼光谱。

#拉曼光谱的优缺点

拉曼光谱的峰宽度FWHM可以窄达4cm-1(0.3nm)[3],因而相比于光谱宽度很宽的荧光光谱(~30nm)有更好的特异性,从光谱本身就有可能得到分子组分,分子振动的信息。拉曼光谱的窄光谱特性还使其更适合进行多组分分析。拉曼光谱信号完全是来自于样本分子振动本身,不需要对样本进行染色等预先处理,因而适合无损的、活体的检测实验。与另外一种经常用于探测分子振动的技术-红外光谱技术相比,由于拉曼光谱技术的激发光一般在可见光与近红外,因此拉曼光谱技术不像红外光谱技术一样容易受到水的影响,因而更适合用于溶液探测,含水的样本探测。

不过拉曼信号十分微弱,相比于瑞丽散射弱107倍,相比于荧光蛋白的荧光信号也弱了有105-106倍。因而拉曼光谱技术对于探测器的灵敏度,信噪比有很高的要求。此外,对于生物样本,拉曼信号常常是叠加于较强荧光信号之上的,为了减少荧光信号的影响,常采用785nm光进行激发[4],而此时拉曼信号的波长就会覆盖到~1000nm。因而生物拉曼系统中,对于探测器的动态范围,近红外的响应也有较高的要求。下面表格总结了三种最常见的光谱技术:拉曼光谱,红外光谱,荧光光谱技术的对比。

wKgZomRZhRyABmWNAACIk9JbP_E25.jpeg



审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光谱
    +关注

    关注

    4

    文章

    830

    浏览量

    35214
收藏 人收藏

    评论

    相关推荐

    高压放大器在气体光谱检测技术研究中的应用

    实验名称:气体光谱检测装置的设计与搭建 测试目的:开展气体光谱检测技术的研究,并设计基于
    的头像 发表于 12-12 10:57 118次阅读
    高压放大器在气体<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>检测技术研究中的应用

    使用光谱检测组织的恶性变化

    介绍 准确、快速、无创地检测和诊断组织中的恶性疾病是生物医学研究的重要目标。漫反射、荧光光谱光谱等光学方法都已被研究作为实现这一目标的方法。漫反射利用组织的吸收和散射特性,特别是
    的头像 发表于 10-17 06:32 202次阅读
    使用<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>检测组织的恶性变化

    光谱的原理及其应用

    一、光谱的原理 光谱(Raman spectra)是一种散射
    的头像 发表于 08-26 06:22 383次阅读

    精准捕捉信号——时间门控光谱系统实验结果深度解析

    在上篇的文章(详见文末目录:闪光科技推出高性能时间门控光谱系统,为科学研究注入新动力!),一文中,我们详细介绍了时间门控
    的头像 发表于 08-13 10:38 387次阅读
    精准捕捉<b class='flag-5'>拉</b><b class='flag-5'>曼</b>信号——时间门控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>系统实验结果深度解析

    厘米级微型光谱

    其光学布局和工作原理如下图所示: 光谱提供了一种微尺度下对化学成分的无损、无标记定量研究手段。现有的
    的头像 发表于 07-09 06:26 328次阅读
    厘米级微型<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>仪

    光谱仪原理及应用

    一、光谱仪的原理 光谱仪的原理是基于印度科学家C.V.
    的头像 发表于 07-01 06:28 681次阅读

    美能晶化率测试仪:光谱成像技术在HJT工艺中的应用与优化

    光谱成像主要用于获取物质的化学信息及其空间分布。美能晶化率测试仪通过高光谱分辨率和低杂散光光谱仪,大幅提升了
    的头像 发表于 06-29 08:33 348次阅读
    美能晶化率测试仪:<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>成像技术在HJT工艺中的应用与优化

    TPIR 785 高通量高灵敏度光谱

    TPIR-785是为近红外研究而优化的高通量系统。TPIR-785具有较宽的近红外光谱范围和高光谱分辨率,是生物研究的理想选择。 TPIR-785主要产品特性: 80-3650 c
    的头像 发表于 06-26 13:44 321次阅读
    TPIR 785 高通量高灵敏度<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>仪

    时间门控光谱的创新驱动力——SPAD的突破与应用

    ◆◆◆◆时间门控光谱的创新驱动力SPAD的突破与应用◆◆◆◆光谱技术是一种基于光与物质分
    的头像 发表于 06-19 08:16 545次阅读
    时间门控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的创新驱动力——SPAD的突破与应用

    探索光谱的奇妙世界:从原理到应用

    光谱是一种非常强大的材料分析工具,可用于探索研究碳质和无机材料的特征,提供其物相、功能和缺陷的有用信息等。此外,表面增强
    的头像 发表于 06-12 17:08 569次阅读
    探索<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的奇妙世界:从原理到应用

    可实现较高效率的单分子检测的数字胶体增强光谱

    该研究针对表面增强光谱领域内定量的挑战,系统阐述了基于数字胶体增强光谱(dCERS)的定
    的头像 发表于 04-23 09:07 599次阅读
    可实现较高效率的单分子检测的数字胶体增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>

    用于单分子无标记定量检测的数字胶体增强光谱技术

    光谱是一种指纹式的、具有分子结构特异性的非弹性散射光谱。通过表面增强
    的头像 发表于 04-22 14:25 587次阅读
    用于单分子无标记定量检测的数字胶体增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>技术

    一文解析散射和光谱

    光谱是一种功能强大且用途广泛的分析技术,用于研究分子和材料样品。该技术基于光的非弹性散射,也称为散射,可以识别和定量样品中的化学键。
    的头像 发表于 03-29 11:36 1136次阅读
    一文解析<b class='flag-5'>拉</b><b class='flag-5'>曼</b>散射和<b class='flag-5'>光谱</b>学

    先进的光谱技术

    图1:药物乳液的共焦图像。油(绿色)、活性药物成分(蓝色)和硅杂质(红色)的化学分布如图所示 由于正常散射产生的信号非常小,研究人员发现了几种机制,通过提高
    的头像 发表于 01-15 06:35 369次阅读
    先进的<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>技术

    光谱装置的布局

    图1:光谱装置。 实际上,每个装置都包括一个激发样品的激光器和一个收集发射信号的探测器。额外的光学器件集成到系统中,以聚焦光束并优化
    的头像 发表于 01-10 06:35 410次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>装置的布局