0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GD32开发实战指南(基础篇) 第6章 按键

嵌入式大杂烩 来源:嵌入式大杂烩 作者:嵌入式大杂烩 2023-05-11 08:57 次阅读

开发环境:

MDK:Keil 5.30

开发板:GD32F207I-EVAL

MCU:GD32F207IK

1 普通方式

1.1 普通方式工作原理

按键 GPIO 端口有两个方案可以选择,一是采用上拉输入模式,因为按键在没按下的时候,是默认为高电平的,采且内部上拉模式正好符合这个要求。第二个方案是直接采用浮空输入模式,因为按照硬件电路图,在芯片外部接了上拉电阻,其实就没必要再配置成内部上拉输入模式了,因为在外部上拉与内部上拉效果是一样的。

1683728778172wwrwwyb44i

笔者本文将会使用KEY1。

1.2 普通方式实现

主函数代码如下:

/*
    brief      main function
    param[in]  none
    param[out] none
    retval     none
*/
int main(void)
{
    //systick init
    sysTick_init();
	
    /* configure LED1 GPIO port */
    led_init(LED1);

    /* configure LED2 GPIO port */
    led_init(LED2);

    /* configure LED3 GPIO port */
    led_init(LED3);

    /* configure LED4 GPIO port */
    led_init(LED4);

    //key init
    key_init(KEY_WAKEUP);
	
    while(1) 
    {
        delay_ms(100);
        if(key_scan(KEY_WAKEUP))
        {
            /* turn toggle LED */
            led_toggle(LED1);
            led_toggle(LED2);
            led_toggle(LED3);
            led_toggle(LED4);
        }
    }
}
  • GPIO 初始化配置
/*
    brief      configure key
    param[in]  keynum: specify the key to be configured
      arg        KEY_TAMPER: tamper key
      arg        KEY_WAKEUP: wakeup key
      arg        KEY_USER: user key
    param[out] none
    retval     none
*/
void key_init(key_typedef_enum keynum)
{
    /* enable the key clock */
    rcu_periph_clock_enable(KEY_CLK[keynum]);
    rcu_periph_clock_enable(RCU_AF);

    /* configure button pin as input */
    gpio_init(KEY_PORT[keynum], GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, KEY_PIN[keynum]);
}

key_init()与 LED 的 GPIO 初始化函数 led_init()类似,区别只是在这个函数中,要开启的 GPIO 的端口时钟不一样,并且把检测按键用的引脚 Pin 的模式设置为适合按键应用的上拉输入模式(由于接了外部上拉电阻,也可以使用浮空输入,读者可自行修改代码做实验)。

  • 按键消抖
/*
    brief      return the key state
    param[in]  keynum: specify the key to be checked
      arg        KEY_TAMPER: tamper key
      arg        KEY_WAKEUP: wakeup key
      arg        KEY_USER: user key
    param[out] none
    retval     the key's GPIO pin value
*/
key_state_enum key_scan(key_typedef_enum keynum)
{
    /* check whether the button is pressed */
    if(RESET == gpio_input_bit_get(KEY_PORT[keynum], KEY_PIN[keynum]))
    {
        delay_ms(100);

        /* check whether the button is pressed */
        if(RESET == gpio_input_bit_get(KEY_PORT[keynum], KEY_PIN[keynum]))
        {
            while(RESET == gpio_input_bit_get(KEY_PORT[keynum], KEY_PIN[keynum]))
            {
                return KEY_ON;
            }
        }
    }
    return KEY_OFF;
}

相信延时消抖的原理大家在学习其他单片机时就已经了解了,本函数的功能就是扫描输入参数中指定的引脚,检测其电平变化,并作延时消抖处理,最终对按键消息进行确认。

  • 利用 gpio_input_bit_get() 读取输入数据,若从相应引脚读取的数据等于 0(KEY_ON),低电平,表明可能有按键按下,调用延时函数。否则返回 KEY_OFF,表示按键没有被按下。
  • 延时之后再次利用 gpio_input_bit_get()读取输入数据,若依然为低电平,表明确实有按键被按下了。否则返回 KEY_OFF,表示按键没有被按下。
  • 循环调用gpio_input_bit_get() 一直检测按键的电平,直至按键被释放,被释放后,返回表示按键被按下的标志 KEY_ON。以上是按键消抖的流程,调用了一个库函数 gpio_input_bit_get()。输入参数为要读取的端口、引脚,返回引脚的输入电平状态,高电平为 1,低电平为 0。

2 EXTI方式

2.1 EXTI的工作原理

EXTI(External Interrupt) 就是指外部中断,通过 GPIO 检测输入脉冲,引起中断事件,打断原来的代码执行流程,进入到中断服务函数中进行处理,处理完后再返回到中断之前的代码中执行。

  • GD32的中断和异常

Cortex内核具有强大的异常响应系统,它把能够打断当前代码执行流程的事件分为异常(exception)和中断(interrupt),并把它们用一个表管理起来,编号为 0 ~ 15 的称为内核异常,而 16 以上的则称为外部中断(外是相对内核而言),这个表就称为中断向量表。

而 GD32 对这个表重新进行了编排,把编号从-3 至 6 的中断向量定义为系统异常,编号为负的内核异常不能被设置优先级,如复位(Reset)、不可屏蔽中断 (NMI)、硬错误(Hardfault)。从编号 7 开始的为外部中断,这些中断的优先级都是可以自行设置的。详细的 GD32中断向量表见下表。

168372877887081545qixac

16837287794042gup5an3bx

……

完整向量表请参考《GD32F20x_User_Manual_EN_Rev2.4》。

GD32的中断如此之多,配置起来并不容易,因此我们需要一个强大而方便的中断控制器 NVIC (Nested Vectored Interrupt Controller)。NVIC 是属于 Cortex 内核的器件,不可屏蔽中断 (NMI)和外部中断都由它来处理,而 SYSTICK 不是由 NVIC 来控制的。

1683728779796q7jzrhgrc4

  • NVIC 结构体成员

当我们要使用 NVIC 来配置中断时,自然想到GD库肯定也已经把它封装成库函数了。查找库帮助文档,发现在 gd32f20x_misc查找到一个nvic_irq_enable() 函数。

/*!
    \\brief      enable NVIC request
    \\param[in]  nvic_irq: the NVIC interrupt request, detailed in IRQn_Type
    \\param[in]  nvic_irq_pre_priority: the pre-emption priority needed to set
    \\param[in]  nvic_irq_sub_priority: the subpriority needed to set
    \\param[out] none
    \\retval     none
*/
void nvic_irq_enable(uint8_t nvic_irq,
                     uint8_t nvic_irq_pre_priority,
                     uint8_t nvic_irq_sub_priority)
{
    uint32_t temp_priority = 0x00U, temp_pre = 0x00U, temp_sub = 0x00U;

    /* use the priority group value to get the temp_pre and the temp_sub */
    switch((SCB->AIRCR) & (uint32_t)0x700U) {
    case NVIC_PRIGROUP_PRE0_SUB4:
        temp_pre = 0U;
        temp_sub = 0x4U;
        break;
    case NVIC_PRIGROUP_PRE1_SUB3:
        temp_pre = 1U;
        temp_sub = 0x3U;
        break;
    case NVIC_PRIGROUP_PRE2_SUB2:
        temp_pre = 2U;
        temp_sub = 0x2U;
        break;
    case NVIC_PRIGROUP_PRE3_SUB1:
        temp_pre = 3U;
        temp_sub = 0x1U;
        break;
    case NVIC_PRIGROUP_PRE4_SUB0:
        temp_pre = 4U;
        temp_sub = 0x0U;
        break;
    default:
        nvic_priority_group_set(NVIC_PRIGROUP_PRE2_SUB2);
        temp_pre = 2U;
        temp_sub = 0x2U;
        break;
    }

    /* get the temp_priority to fill the NVIC->IP register */
    temp_priority = (uint32_t)nvic_irq_pre_priority << (0x4U - temp_pre);
    temp_priority |= nvic_irq_sub_priority & (0x0FU >> (0x4U - temp_sub));
    temp_priority = temp_priority << 0x04U;
    NVIC->IP[nvic_irq] = (uint8_t)temp_priority;

    /* enable the selected IRQ */
    NVIC->ISER[nvic_irq >> 0x05U] = (uint32_t)0x01U << (nvic_irq & (uint8_t)0x1FU);
}

该函数有三个参数,需要配置的中断向量,中断向量抢占优先级和中断向量的响应优先级。

前面两个结构体成员都很好理解,首先要用 nvic_irq参数来选择将要配置的中断向量。用nvic_irq_pre_priority参数要配置中断向量的抢占优先级,用nvic_irq_sub_priority参数配置中断向量的响应优先级。对于中断的配置,最重要的便是配置其优先级,但 GD32 的同一个中断向量为什么需要设置两种优先级?这两种优先级有什么区别?

  • 抢占优先级和响应优先级

GD32的中断向量具有两个属性,一个为抢占属性,另一个为响应属性,其属性编号越小,表明它的优先级别越高。

抢占,是指打断其他中断的属性,即因为具有这个属性会出现嵌套中断(在执行中断服务函数 A 的过程中被中断 B 打断,执行完中断服务函数 B 再继续执行中断服务函数A),抢占属性由nvic_irq_pre_priority参数配置。

而响应属性则应用在抢占属性相同的情况下,当 两个中断向量的抢占优先级相同时,如 果两个中断同时到达,则先处理响应优先级高的中断,响应属性 由nvic_irq_sub_priority参数配置。例如,现在有三个中断向量,见下表。

中断向量 抢占优先级 响应优先级
A 0 0
B 1 0
C 1 1

若内核正在执行 C 的中断服务函数,则它能被抢占优先级更高的中断 A 打断,由于 B和 C 的抢占优先级相同,所以 C 不能被 B 打断。但如果 B 和 C 中断是同时到达的,内核就会首先响应响应优先级别更高的 B 中断。

  • NVIC 的优先级组

在配置优先级的时候,还要注意一个很重要的问题,即中断种类的数量。NVIC 只可以配置 16 种中断向量的优先级,也就是说,抢占优先级和响应优先级的数量由一个 4 位的数字来决定,把这个 4 位数字的位数分配成抢占优先级部分和响应优先级部分。有 5 组分配方式 :

  • 第 0 组:所有 4 位用来配置响应优先级。即 16 种中断向量具有都不相同的响应优先级。
  • 第 1 组:最高 1 位用来配置抢占优先级,低 3 位用来配置响应优先级。表示有 21=2 种级别的抢占优先级(0 级,1 级),有 23=8 种响应优先级,即在 16 种中断向量之中,有8 种中断,其抢占优先级都为 0 级,而它们的响应优先级分别为 0~7,其余 8 种中断向量的抢占优先级则都为 1 级,响应优先级别分别为 0~7。
  • 第 2 组:2 位用来配置抢占优先级,2 位用来配置响应优先级。即 22=4 种抢占优先级,22=4 种响应优先级。
  • 第 3 组:高 3 位用来配置抢占优先级,最低 1 位用来配置响应优先级。即有 8 种抢占优先级,2 种响应 2 优先级。
  • 第 4 组:所有 4 位用来配置抢占优先级,即 NVIC 配置的 24 =16 种中断向量都是只有抢占属性,没有响应属性。

要配置这些优先级组,可以采用库函数 nvic_priority_group_set(),可输入的参数为NVIC_PRIGROUP_PRE0_SUB4 ~ NVIC_PRIGROUP_PRE4_SUB0,分别为以上介绍的 5 种分配组。

GD32的所有 I/O 端口都可以配置为 EXTI 中断模式,用来捕捉外部信号,可以配置为下降沿中断、上升沿中断和上升下降沿中断这三种模式。它们以图2所示方式连接到外部中断 / 事件线上。

  • EXTI 外部中断

GD32的所有 GPIO 都引入到 EXTI 外部中断线上,使得所有的 GPIO 都能作为外部中断的输入源。GPIO 与 EXTI 的连接方式见下表。

由下表可知,PA0 ~ PI0 连接到 EXTI0 、PA1~ PI1 连接到 EXTI1、……、PA15 ~ PI15 连接到 EXTI15。这里大家要注意的是 :PAx ~ PIx 端口的中断事件都连接到了 EXTIx,即同一时刻 EXTIx 只能响应一个端口的事件触发,不能够同一时间响应所有GPIO 端口的事件,但可以分时复用。它可以配置为上升沿触发、下降沿触发或双边沿触发。EXTI 最普通的应用就是接上一个按键,设置为下降沿触发,用中断来检测按键。

16837287803731iicow74v2

2.2 2 EXTI的寄存器描述

EXTI 寄存器的寄存器主要有6个,下面分别描述。

  • 中断使能寄存器(EXTI_INTEN)

168372878086925fpvkv808

  • 事件使能寄存器(EXTI_EVEN)

1683728781270z65ikushbx

1683728781667lr52pege20

  • 上升沿触发选择寄存器(EXTI_RTEN)

16837287819546y9sa7lt8l

注意: 外部唤醒线是边沿触发的,这些线上不能出现毛刺信号。在写EXTI_RTSR寄存器时,在外部中断线上的上升沿信号不能被识别,挂起位也不会被置位。在同一中断线上,可以同时设置上升沿和下降沿触发。即任一边沿都可触发中断。

  • 下降沿触发选择寄存器(EXTI_FTEN)

1683728782395kdebg1j966

注意: 外部唤醒线是边沿触发的,这些线上不能出现毛刺信号。在写EXTI_FTSR寄存器时,在外部中断线上的下降沿信号不能被识别,挂起位不会被置位。在同一中断线上,可以同时设置上升沿和下降沿触发。即任一边沿都可触发中断。

  • 软件中断事件寄存器(EXTI_SWIEV)

1683728782836102ykdro3b

  • 挂起寄存器(EXTI_PD)

1683728783212gqkpbuuo0g

2.3 EXTI方式实现

主函数代码如下:

/*
    brief      main function
    param[in]  none
    param[out] none
    retval     none
*/
int main(void)
{
    //systick init
    sysTick_init();
	
    /* configure LED1 GPIO port */
    led_init(LED1);

    /* configure LED2 GPIO port */
    led_init(LED2);

    /* configure LED3 GPIO port */
    led_init(LED3);

    /* configure LED4 GPIO port */
    led_init(LED4);
	
    //key init
    key_init(KEY_WAKEUP, KEY_MODE_EXTI);
	
    while(1) 
    {
        delay_ms(100);
    }
}
  • 配置外部中断

现在我们重点分析 key_init() 这个函数,它完成了配置一个 I/O 为 EXTI 中断的一般步骤,主要有以下功能 :

1)使能 EXTIx 线的时钟和第二功能 AFIO 时钟。

2)配置 EXTIx 线的中断优先级。

3)配置 EXTI 中断线 I/O。

4)选定要配置为 EXTI 的 I/O 口线和 I/O 口的工作模式。

5)EXTI 中断线工作模式配置。

/*
    brief      configure key
    param[in]  keynum: specify the key to be configured
      arg        KEY_TAMPER: tamper key
      arg        KEY_WAKEUP: wakeup key
      arg        KEY_USER: user key
    param[in]  keymode: specify button mode
      arg        KEY_MODE_GPIO: key will be used as simple IO
      arg        KEY_MODE_EXTI: key will be connected to EXTI line with interrupt
    param[out] none
    retval     none
*/
void key_init(key_typedef_enum keynum, keymode_typedef_enum keymode)
{
    /* enable the key clock */
    rcu_periph_clock_enable(KEY_CLK[keynum]);
    rcu_periph_clock_enable(RCU_AF);

    /* configure button pin as input */
    gpio_init(KEY_PORT[keynum], GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, KEY_PIN[keynum]);

    if (keymode == KEY_MODE_EXTI) 
    {
        /* enable and set key EXTI interrupt to the lowest priority */
        nvic_irq_enable(KEY_IRQn[keynum], 2U, 0U);

        /* connect key EXTI line to key GPIO pin */
        gpio_exti_source_select(KEY_PORT_SOURCE[keynum], KEY_PIN_SOURCE[keynum]);

        /* configure key EXTI line */
        exti_init(KEY_EXTI_LINE[keynum], EXTI_INTERRUPT, EXTI_TRIG_FALLING);
        exti_interrupt_flag_clear(KEY_EXTI_LINE[keynum]);
    }
}

key_init()代码中,不仅配置了NVIC ,还对按键的GPIO进行了初始化,这部分和按键轮询的设置类似。

接下来,调用 gpio_exti_source_select () 函数把 GPIOA、Pin0 与EXTI连接起来。

最后调用 exti_init() 把 EXTI 初始化,函数如下:

/*!
    \\brief      initialize the EXTI
    \\param[in]  linex: EXTI line number, refer to exti_line_enum
                only one parameter can be selected which is shown as below:
      \\arg        EXTI_x (x=0..19): EXTI line x
    \\param[in]  mode: interrupt or event mode, refer to exti_mode_enum
                only one parameter can be selected which is shown as below:
      \\arg        EXTI_INTERRUPT: interrupt mode
      \\arg        EXTI_EVENT: event mode
    \\param[in]  trig_type: interrupt trigger type, refer to exti_trig_type_enum
                only one parameter can be selected which is shown as below:
      \\arg        EXTI_TRIG_RISING: rising edge trigger
      \\arg        EXTI_TRIG_FALLING: falling trigger
      \\arg        EXTI_TRIG_BOTH: rising and falling trigger
      \\arg        EXTI_TRIG_NONE: without rising edge or falling edge trigger
    \\param[out] none
    \\retval     none
*/
void exti_init(exti_line_enum linex, exti_mode_enum mode, exti_trig_type_enum trig_type)
{
    /* reset the EXTI line x */
    EXTI_INTEN &= ~(uint32_t)linex;
    EXTI_EVEN &= ~(uint32_t)linex;
    EXTI_RTEN &= ~(uint32_t)linex;
    EXTI_FTEN &= ~(uint32_t)linex;

    /* set the EXTI mode and enable the interrupts or events from EXTI line x */
    switch(mode) {
    case EXTI_INTERRUPT:
        EXTI_INTEN |= (uint32_t)linex;
        break;
    case EXTI_EVENT:
        EXTI_EVEN |= (uint32_t)linex;
        break;
    default:
        break;
    }

    /* set the EXTI trigger type */
    switch(trig_type) {
    case EXTI_TRIG_RISING:
        EXTI_RTEN |= (uint32_t)linex;
        EXTI_FTEN &= ~(uint32_t)linex;
        break;
    case EXTI_TRIG_FALLING:
        EXTI_RTEN &= ~(uint32_t)linex;
        EXTI_FTEN |= (uint32_t)linex;
        break;
    case EXTI_TRIG_BOTH:
        EXTI_RTEN |= (uint32_t)linex;
        EXTI_FTEN |= (uint32_t)linex;
        break;
    case EXTI_TRIG_NONE:
    default:
        break;
    }
}
  • AFIO 时钟

代码中调用rcu_periph_clock_enable(RCU_AF)表示开启 AFIO的时钟。

AFIO (alternate-function I/O),指 GPIO 端口的复用功能,GPIO 除了用作普通的输入输出(主功能),还可以作为片上外设的复用输入输出,如串口、ADC,这些就是复用功能。大多数 GPIO 都有一个默认复用功能,有的 GPIO 还有重映射功能。重映射功能是指把原来属于 A 引脚的默认复用功能,转移到B引脚进行使用,前提是 B 引脚具有这个重映射功能。

当把 GPIO 用作 EXTI 外部中断或使用重映射功能的时候,必须开启 AFIO 时钟,而在使用默认复用功能的时候,就不必开启 AFIO 时钟了。

  • 编写中断服务函数

在这个 EXTI 设置中我们把 PA0 连接到内部的 EXTI0,GPIO 配置为上拉输入,工作在下降沿中断。在外围电路上我们将 PA0 接到了 key上。当按键没有按下时,PA0 始终为高,当按键按下时 PA0 变为低,从而 PA0 上产生一个下降沿跳变,EXTI0 会捕捉到这一跳变,并产生相应的中断,中断服务程序在 gd32f20x_it.c 中实现。gd32f20x_it.c 文件是专门用来存放中断服务函数的。文件中默认只有几个关于系统异常的中断服务函数,而且都是空函数,在需要的时候自行编写。那么中断服务函数名是不是可以自己定义呢?不可以。中断服务函数的名字必须要与启动文件startup_gd32f20x_cl.s 中的中断向量表定义一致。

16837287836368hav0m3p26

EXTI0_IRQHandler 表示为 EXTI0 中断向量的服务函数名。于是,我们就可以在 gd32f20x_it.c文件中加入名为 EXTI0_IRQHandler() 的函数。

/*!
    \\brief      this function handles external lines 0 interrupt request
    \\param[in]  none
    \\param[out] none
    \\retval     none
*/
void EXTI0_IRQHandler(void)
{
    if(RESET != exti_interrupt_flag_get(EXTI_0))
    {
        /* turn toggle LED */
        led_toggle(LED1);
        led_toggle(LED2);
        led_toggle(LED3);
        led_toggle(LED4);

       exti_interrupt_flag_clear(EXTI_0);
   }
}

其内容比较容易理解,进入中断后,调用exti_interrupt_flag_get() 库函数来重新检查是否产生了 EXTI_Line 中断,接下来把 LED 取反,操作完毕后,调用 exti_interrupt_flag_clear()清除中断标志位再退出中断服务函数。

3 实验现象

编译好程序后,下载到板子上,不管是普通方式还是中断方式,当按在按键KEY1时,LED或亮或灭。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • mcu
    mcu
    +关注

    关注

    146

    文章

    17172

    浏览量

    351567
  • 按键
    +关注

    关注

    4

    文章

    223

    浏览量

    57614
  • 开发板
    +关注

    关注

    25

    文章

    5074

    浏览量

    97661
  • Cortex-M
    +关注

    关注

    2

    文章

    229

    浏览量

    29777
  • GD32
    +关注

    关注

    7

    文章

    404

    浏览量

    24373
收藏 人收藏

    评论

    相关推荐

    GD32开发实战指南(基础) 1 开发环境搭建

    开发环境: MDK:Keil 5.30 开发板:GD32F207I-EVAL MCU:GD32F207IK 1 GD32F207I-EVAL
    的头像 发表于 05-07 23:35 1.1w次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>1<b class='flag-5'>章</b> <b class='flag-5'>开发</b>环境搭建

    GD32开发实战指南(基础) 4 GD32启动流程详解(Keil版)

    ,所有的一切都需要由开发者来设置,这里处理器是没有堆栈,没有中断,更没有外围设备,这些工作是需要软件来指定的,而且不同的CPU类型、不同大小的内存和不同种类的外设,其初始化工作都是不同的。本文将以GD32F207IK (基于Cortex-M3)为例进行讲解。
    的头像 发表于 05-10 09:00 1.7w次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>4<b class='flag-5'>章</b> <b class='flag-5'>GD32</b>启动流程详解(Keil版)

    GD32开发实战指南(基础) 7 定时器

    系统滴答定时器一般用来提供“心跳”作用,而GD32定时器最基本功能也是定时,可以设置不同时间长度的定时。定时器除了最基本的定时功能外,定时器与GPIO有挂钩使得它可以发挥强大的作用,比如可以输出
    的头像 发表于 05-11 09:00 1.2w次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>7<b class='flag-5'>章</b> 定时器

    GD32开发实战指南(基础) 8 定时器

    Modulation” 的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单一点,就是对脉冲宽度的控制。 GD32 的定时器除了 TIMER5 和 6(基本定时器
    的头像 发表于 05-12 22:14 8002次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>8<b class='flag-5'>章</b> 定时器

    GD32开发实战指南(基础) 11 CPU的高级代理-DMA

    或者存储器和存储器之间的高速数据传输,因而被广泛地使用。早在 8086 的应用中就已经有 Intel 的 8237 这种典型的 DMA 控制器,而 GD32的 DMA 则是以类似外设的形式添加到 Cortex 内核之外的。可以说,DMA就是CPU的高级代理,DMA大大减轻了CPU的负担。
    的头像 发表于 05-16 08:59 3875次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>11<b class='flag-5'>章</b> CPU的高级代理-DMA

    GD32开发实战指南(基础) 12 ADC

    GD32F2系列有 3 个逐次逼近型的ADC,精度为 12 位,有18个多路复用通道,可以转换来自16个外部通道和2个内部通道的模拟信号。其中ADC0 和 ADC1都有 16 个外部通道, ADC2
    的头像 发表于 05-16 09:03 1.1w次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>12<b class='flag-5'>章</b> ADC

    GD32开发实战指南(基础) 14 内部温度传感器

    GD32 有一个内部的温度传感器,可以用来测量 CPU 及周围的温度(TA)。该温度传感器在内部和 ADCx_IN16 输入通道相连接,此通道把传感器输出的电压转换成数字值。温度传感器模拟输入
    的头像 发表于 05-17 08:58 5428次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>14<b class='flag-5'>章</b> 内部温度传感器

    GD32开发实战指南(基础) 15 低功耗

    GD32的工作电压(VDD)为2.0~3.6V。通过内置的电压调节器提供所需的1.8V电源。当主电源VDD掉电后,通过VBAT脚为实时时钟(RTC)和备份寄存器提供电源。
    的头像 发表于 05-17 08:59 8098次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>15<b class='flag-5'>章</b> 低功耗

    GD32开发实战指南(基础) 16 RTC

    开发环境: MDK:Keil 5.30 开发板:GD32F207I-EVAL MCU:GD32F207IK 1 RTC工作原理 1.1 RTC简介
    的头像 发表于 05-18 22:14 7207次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>16<b class='flag-5'>章</b> RTC

    GD32开发实战指南(基础) 17 看门狗

    开发环境: MDK:Keil 5.30 开发板:GD32F207I-EVAL MCU:GD32F207IK GD32 有两个看门狗, 一个是
    的头像 发表于 06-03 16:00 1.1w次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>17<b class='flag-5'>章</b> 看门狗

    【图书分享】《STM32库开发实战指南

    GPIO入门之流水灯 4 深入分析流水灯例程 5 调试程序第二部分 库开发中级 
    发表于 03-13 17:01

    Arduino开发实战指南 AVR

    第一基础1初识Arduino2编写Arduino程序
    发表于 08-03 16:14

    GD32 MCU原理及固件库开发指南》 + 初读感悟

    GD32 MCU原理固件库开发指南这本书内容丰富,囊括了GD32中的所有外设,书中首先介绍了如何使用MDK或IAR软件搭建GD32工程环境,让初学者能快速基于工程上手编程。书中主要对
    发表于 03-31 22:11

    GD32 MCU原理及固件库开发指南》+读后感

    2介绍GD32 MCU快速入门与开发平台搭建的方法,包括对软硬件开发平台、调试工具、GD32
    发表于 06-06 21:52

    GD32开发实战指南(基础) 19 程序加密

    GD32通过读取芯片唯一ID号来实现程序的保护,防止被抄袭。96位的产品唯一身份标识所提供的参考号码对任意一个GD32微控制器
    的头像 发表于 05-20 09:10 4176次阅读
    <b class='flag-5'>GD32</b><b class='flag-5'>开发</b><b class='flag-5'>实战</b><b class='flag-5'>指南</b>(基础<b class='flag-5'>篇</b>) <b class='flag-5'>第</b>19<b class='flag-5'>章</b> 程序加密