0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于空心微针的等离子体传感器检测真皮间质液中的生物标志物

MEMS 来源:MEMS 2023-05-11 17:50 次阅读

疾病的诊断和监测常常通过检测血液、尿液、唾液和其它体液中的生物标志物来实现。特别是包围着体内细胞和组织的间质液(ISF),是一种丰富的生物标志物来源。由于间质液中不含任何颗粒,并且运输的蛋白质比血清中运输的蛋白质少,因此有利于生物传感应用。此外,与其它体液相比,间质液中同时含有系统性生物标志物和特异性生物标志物。然而,收集间质液的困难限制了其在临床和研究中的应用。获取间质液对于促进新的生物标志物的发现、更有效的医疗保健以及对不同疾病的早期诊断和监测非常重要。就速度和安全性方面而言,通过皮肤来收集间质液是最佳方式。由于皮肤是最容易接触的器官,因而是一个有效的间质液来源。通过皮肤提取间质液的方法有多种,如植入式毛细管法、微移液管插入法和水泡法等。目前,这些方法正逐渐被微针(MNs)的使用所取代。微针具有更强的以微创方式获取生物信息的能力,并且具有无痛、耐受性好、易于使用和有效的优势。

微针是一种具有微米级特征尺寸的装置,能够物理破坏角质层(SC),即皮肤的外层。微针的长度为数百微米,尖端锋利,通常以阵列形式组装在贴片上,并且,组装后的微针贴片可以轻松贴在皮肤上。不同类型的微针,如实心微针、溶胀微针和空心微针都可以用作传感器。其中,空心微针(HMNs)具有内置腔体,可以作为有效的生物流体收集器,在真皮层和皮肤外层之间的界面上创建透皮流体路径。此外,空心微针通常与吸液纸集成,集成后的装置能够收集间质液,以用于后续的化学分析。然而,通过空心微针装置收集的间质液通常需要在额外的独立装置中进行分析,从而需要引入额外的间质液转移步骤,即将纸基微针贴片在萃取介质中进行孵育,并通过离心从中提取分析物,而后再用适当的分析方法对提取出的分析物进行检测。总而言之,这些装置需要将收集到的间质液从微针管腔转移到分析物检测器。这通常使得微针装置只能以较长的时间提取少量可使用的间质液,从而进一步导致传感器响应的缓慢。

据麦姆斯咨询报道,为了克服以上微针技术的局限性,意大利国家研究委员会应用科学和智能系统研究所(ISASI)的研究人员提出了一种空心微针贴片装置,该装置的微针空腔中填充了含有金纳米颗粒(AuNPs)的高度溶胀聚乙二醇二丙烯酸酯(PEGDA)3D网络结构,从而构建了一种等离子体传感器。该微针装置可以直接检测提取的生物标志物,无需任何额外的步骤。该基于高分子量(Mw)PEGDA和球形金纳米颗粒的3D光学传感器集成了以下几个优点,例如,在空心微针腔内具有良好的适应性和灵活性,更高的表面积以及表面积体积比,并且不需要复杂的电路(因为与皮肤接触会产生干扰,复杂电路的需求通常是可穿戴生物传感器应用的瓶颈)。相关研究成果以“Hollow Microneedle-based Plasmonic Sensor for on Patch Detection of Molecules in Dermal Interstitial Fluid”为题发表于Advanced Materials期刊。

9f863aa8-ec25-11ed-90ce-dac502259ad0.jpg

等离子体纳米复合材料在空心微针阵列腔内的集成

该空心微针贴片通过光刻方法制造,并利用了PEGDA在低分子量下的光交联特性。PEGDA是一种具有生物相容性的无毒聚合物。将金纳米颗粒包裹在高分子量PEGDA中,然后插入到空心微针腔中。随后,利用高分子量PEGDA的高溶胀特性提取间质液。该技术避免了对收集的间质液进行独立分析,并允许直接从微针装置检测感兴趣的靶分子。

9faa5f3c-ec25-11ed-90ce-dac502259ad0.jpg

空心微针阵列的制备与表征

此外,该微针传感装置利用金纳米颗粒作为光学换能器,该换能器的原理是基于局部表面等离子体共振(LSPR)现象,该现象是由特定激发波长下纳米颗粒表面电子密度的振荡引起的。与此同时,如果满足合适的条件,金纳米颗粒周围的电磁场增强可以导致荧光团的强荧光增强。这种现象被称为金属增强荧光(MEF)或等离子体增强荧光,通常用于将等离子体生物传感器的检测极限(LOD)提高到单分子水平。因此,设计并制作的基于高分子量PEGDA和球形金纳米颗粒的等离子体纳米复合换能器可在双光学模式下工作。随后,为了进行概念验证,研究人员利用生物素-链霉亲和素的相互结合作用构建靶/受体耦联系统,在溶液中测试了集成等离子体空心微针装置的传感性能。

9fc374ae-ec25-11ed-90ce-dac502259ad0.jpg

等离子体空心微针阵列对生物素-链霉亲和素相互结合作用的双光学模式传感

最后,研究人员通过使用由封口膜和琼脂(分别用于模拟角质层和真皮层)制成的皮肤模型,测试了所提出的装置从皮肤中收集和捕获生物素靶分子的能力。测试结果表明,无论是利用无标记的LSPR传感机制还是基于荧光的传感机制,作为靶标的生物素,都可以被成功地检索和光学检测,从而证明了本文所提出平台的功能有效性。

9fdea0f8-ec25-11ed-90ce-dac502259ad0.jpg

从皮肤模型中提取和检测生物素的概念验证工作

综上所述,该研究开发的等离子体空心微针可以作为开发一种简单、低成本、可大规模推广和通用的使用点(point-of-use,PoU)检测装置工作的起点,可以替代传统的、昂贵的、费力的医院或实验室装置,用于监测患者体内间质液中的生物标志物。此外,通过利用不同形状的纳米颗粒(例如纳米棱柱、纳米三角形和/或纳米星形)以及其尖端形状现象,或者通过增加换能器体积从而增加收集的间质液体积,可以进一步提升小分子的无标记检测性能。由于人口老龄化以及专业人员和医院床位的缺乏,这些PoU检测装置正受到越来越多的关注。因此,对PoU装置的需求变得越来越迫切,所提出的方法可以为满足这一需求铺平道路。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2550

    文章

    51039

    浏览量

    753087
  • 换能器
    +关注

    关注

    8

    文章

    346

    浏览量

    29483
  • MEF
    MEF
    +关注

    关注

    0

    文章

    3

    浏览量

    6263

原文标题:基于空心微针的等离子体传感器,检测真皮间质液中的生物标志物

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    等离子体发射的工作原理

    恒星、闪电、极光等现象。在人工环境等离子体可以通过加热气体至高温或通过电场加速气体分子来产生。 等离子体发射的工作原理
    的头像 发表于 11-29 10:11 230次阅读

    等离子体技术在航天的作用

    的推力,从而提高航天的效率和经济性。 霍尔效应推进(Hall Effect Thruster, HET) 霍尔效应推进是一种常见的等离子体推进
    的头像 发表于 11-29 10:10 298次阅读

    等离子体电导率的影响因素

    等离子体,作为物质的第四态,广泛存在于自然界和工业应用。从太阳风到荧光灯,等离子体的身影无处不在。等离子体的电导率是衡量其导电性能的关键参数,它决定了
    的头像 发表于 11-29 10:08 314次阅读

    等离子体的定义和特征

    的电导性和磁场响应性。 等离子体的特征 电离状态 :等离子体的原子或分子部分或全部失去电子,形成带电粒子。 电导性 :由于存在自由电子和离子等离
    的头像 发表于 11-29 10:06 288次阅读

    等离子体在医疗领域的应用

    等离子体,作为物质的第四态,不仅在物理学和工程学领域有着广泛的应用,而且在医疗领域也展现出了巨大的潜力。等离子体技术以其独特的物理和化学特性,为疾病治疗和生物医学研究提供了新的工具和方法。 1.
    的头像 发表于 11-29 10:04 186次阅读

    等离子体清洗的原理与方法

    的污染发生化学反应,从而去除或改变污染的化学性质。 物理轰击 :等离子体离子和中性粒子可以对材料表面进行物理轰击,通过撞击力去除表面
    的头像 发表于 11-29 10:03 189次阅读

    为什么干法刻蚀又叫低温等离子体刻蚀

    等离子体广泛存在于自然界,如闪电,太阳表面都会有大量的等离子体产生,因为等离子体的实质是气体的电离。自然界的等离子体的核心温度可以达到1
    的头像 发表于 11-16 12:53 221次阅读
    为什么干法刻蚀又叫低温<b class='flag-5'>等离子体</b>刻蚀

    什么是等离子体

    等离子体,英文名称plasma,是物质的第四态,其他三态有固态,液态,气态。在半导体领域一般是气体被电离后的状态,又被称为‘电浆’,具有带电性和流动性的特点。
    的头像 发表于 11-05 09:34 199次阅读
    什么是<b class='flag-5'>等离子体</b>

    什么是电感耦合等离子体,电感耦合等离子体的发明历史

    电感耦合等离子体(Inductively Coupled Plasma, ICP)是一种常用的等离子体源,广泛应用于质谱分析、光谱分析、表面处理等领域。ICP等离子体通过感应耦合方式将射频能量传递给气体,激发成
    的头像 发表于 09-14 17:34 717次阅读

    射频功率放大器在等离子体压力传感器的应用

    实验名称:等离子体压力传感器及其在动态压力测量的应用研究方向:压力传感器测试目的:如何准确测量高超冲压发动机隔离段和航空发动机压气机部件的内部流场是提升发动机性能及可靠性的有效手段之
    的头像 发表于 07-31 14:33 773次阅读
    射频功率放大器在<b class='flag-5'>等离子体</b>压力<b class='flag-5'>传感器</b><b class='flag-5'>中</b>的应用

    上海大学:研发电化学生物传感器检测神经系统疾病生物标志物

    传感新品 【上海大学:研发电化学生物传感器检测神经系统疾病生物标志物】 神经丝蛋白轻链(NEFL)是神经退行性疾病的潜在
    的头像 发表于 06-28 17:15 606次阅读
    上海大学:研发电化学<b class='flag-5'>生物传感器</b><b class='flag-5'>检测</b>神经系统疾病<b class='flag-5'>生物</b><b class='flag-5'>标志物</b>

    利用滴纳米孔传感平台,实现单分子水平上皮克级生物标志物的灵敏检测

    生物标志物存在于各种新陈代谢过程,需要在单分子水平上进行精确细致的分析,以进行准确的临床诊断。
    的头像 发表于 04-23 11:38 661次阅读
    利用<b class='flag-5'>液</b>滴纳米孔<b class='flag-5'>传感</b>平台,实现单分子水平上皮克级<b class='flag-5'>生物</b><b class='flag-5'>标志物</b>的灵敏<b class='flag-5'>检测</b>

    综述:基于间质的可穿戴生物传感器研究和应用进展

    总体而言,ISF传感器能够通过无创或创方式检测重要的临床相关生物标志物或药物,在诊断、管理疾病和监测药物方面展现出巨大的潜力。这些ISF
    的头像 发表于 04-13 11:58 1889次阅读
    综述:基于<b class='flag-5'>间质</b><b class='flag-5'>液</b>的可穿戴<b class='flag-5'>生物传感器</b>研究和应用进展

    Aigtek安泰电子第一届全国等离子体生物医学学术会议圆满结束!

    第1届全国等离子体生物医学会议由西安交通大学发起的“第一届全国等离子体生物医学学术会议”于2024年3月15日-18日在西安成功举办。会议吸引了来自全国80余家高校、研究所、医院和企业
    的头像 发表于 03-22 08:01 412次阅读
    Aigtek安泰电子第一届全国<b class='flag-5'>等离子体</b><b class='flag-5'>生物</b>医学学术会议圆满结束!

    掀起神秘第四态的面纱!——等离子体羽流成像

    01、重点和难点 等离子体通常被认为是物质的第四态,除了固体、液体和气体之外的状态。等离子体是一种高能量状态的物质,其中原子或分子的电子被从它们的原子核解离,并且在整个系统
    的头像 发表于 12-26 08:26 658次阅读
    掀起神秘第四态的面纱!——<b class='flag-5'>等离子体</b>羽流成像