0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

大模型训练,英伟达Turing、Ampere和Hopper算力分析

智能计算芯世界 来源:智能计算芯世界 2023-05-15 11:16 次阅读

GPU 优势在于通过并行计算实现大量重复性计算。GPGPU即通用GPU,能够帮助 CPU 进行非图形相关程序的运算。在类似的价格和功率范围内,GPU 能提供比CPU 高得多的指令吞吐量和内存带宽。GPGPU 架构设计时去掉了 GPU 为了图形处理而设计的加速硬件单元,保留了 GPU 的 SIMT架构和通用计算单元,通过 GPU 多条流水线的并行计算来实现大量计算。

所以基于 GPU 的图形任务无法直接运行在 GPGPU 上,但对于科学计算,AI 训练、推理任务(主要是矩阵运算)等通用计算类型的任务仍然保留了 GPU 的优势,即高效的搬运和运算有海量数据的重复性任务。目前主要用于例如物理计算、加密解密、科学计算以及比特币等加密货币的生成。

7d90cb3e-f2ce-11ed-90ce-dac502259ad0.png

7da4486c-f2ce-11ed-90ce-dac502259ad0.png

随着超算等高并发性计算的需求不断提升,英伟达以推动 GPU 从专用计算芯片走向通用计算处理器为目标推出了GPGPU,并于 2006 年前瞻性发布并行编程模型 CUDA,以及对应工业标准的 OpenCL。CUDA 是英伟达的一种通用并行计算平台和编程模型,它通过利用图形处理器 (GPU)的处理能力,可大幅提升计算性能。CUDA 使英伟达的 GPU 能够执行使用 C、C++、Fortran、OpenCL、DirectCompute 和其他语言编写的程序。在 CUDA 问世之前,对 GPU 编程必须要编写大量的底层语言代码;CUDA 可以让普通程序员可以利用 C 语言、C++等为 CUDA 架构编写程序在 GPU平台上进行大规模并行计算,在全球 GPGPU 开发市场占比已超过 80%。GPGPU 与 CUDA 组成的软硬件底座,构成了英伟达引领 AI 计算及数据中心领域的根基。

GPU 架构升级过程计算能力不断强化,Hopper 架构适用于高性能计算(HPC)和 AI 工作负载。英伟达在架构设计上,不断加强 GPU 的计算能力和能源效率。在英伟达 GPU 架构的演变中,从最先 Tesla 架构,分别经过 Fermi、Kepler、Maxwell、Pascal、Volta、Turing、Ampere至发展为今天的 Hopper 架构。

以 Pascal 架构为分界点,自 2016 年后英伟达逐步开始向深度学习方向演进。根据英伟达官网,Pascal 架构,与上一代 Maxwell 相比,神经网络训练速度提高 12 倍多,并将深度学习推理吞吐量提升了 7 倍。

Volta 架构,配备 640 个 Tensor 内核增强性能,可提供每秒超过 100 万亿次(TFLOPS)的深度学习性能,是上一代 Pascal 架构的 5 倍以上。

Turing 架构,配备全新 Tensor Core,每秒可提供高达 500 万亿次的张量运算。

Ampere架构,采用全新精度标准 Tensor Float 32(TF32),无需更改任何程序代码即可将AI 训练速度提升至 20 倍。

最新Hopper 架构是第一个真正异构加速平台,采用台积电 4nm 工艺,拥有超 800 亿晶体管,主要由 Hopper GPU、Grace CPU、NVLINK C2C 互联和 NVSwitch 交换芯片组成,根据英伟达官网介绍,其性能相较于上一代 Megatron 530B 拥有 30 倍 AI 推理速度的提升。

7dce498c-f2ce-11ed-90ce-dac502259ad0.png

7df2e0f8-f2ce-11ed-90ce-dac502259ad0.png

AMD 数据中心领域布局全面,形成 CPU+GPU+FPGA+DPU 产品矩阵。与英伟达相比,AMD 在服务器端 CPU 业务表现较好,根据 Passmark 数据显示,2021 年 Q4 AMD EPYC 霄龙系列在英特尔垄断下有所增长,占全球服务器 CPU 市场的 6%。依据 CPU 业务的优势,AMD 在研发 GPGPU 产品时推出 Infinity Fabric 技术,将 EPYC 霄龙系列 CPU 与 Instinct MI 系列 GPU 直接相连,实现一致的高速缓存,形成协同效应。此外,AMD 分别于 2022 年 2 月、4 月收购 Xilinx 和Pensando,补齐 FPGA 与 DPU 短板,全面进军数据中心领域。

软件方面,AMD 推出 ROCm 平台打造 CDNA 架构,但无法替代英伟达 CUDA 生态。AMD 最新的面向 GPGPU 架构为 CDNA 系列架构,CDNA 架构使用 ROCm 自主生态进行编写。AMD 的 ROCm 生态采取 HIP 编程模型,但 HIP 与 CUDA 的编程语法极为相似,开发者可以模仿 CUDA 的编程方式为 AMD 的 GPU 产品编程,从而在源代码层面上兼容 CUDA。所以从本质上来看,ROCm 生态只是借用了 CUDA 的技术,无法真正替代 CUDA 产生壁垒。

7e10d8ec-f2ce-11ed-90ce-dac502259ad0.png

软硬件共同布局形成生态系统,造就英伟达核心技术壁垒。

 硬件端:基于 GPU、DPU 和 CPU 构建英伟达加速计算平台生态:

(1)主要产品 Tesla GPU 系列迭代速度快,从 2008 年至 2022 年,先后推出 8 种 GPU 架构,平均两年多推出新架构,半年推出新产品。超快的迭代速度使英伟达的 GPU 性能走在 AI 芯片行业前沿,引领人工智能计算领域发生变革。

(2)DPU 方面,英伟达于 2019 年战略性收购以色列超算以太网公司 Mellanox,利用其InfiniBand(无限带宽)技术设计出 Bluefield 系列 DPU 芯片,弥补其生态在数据交互方面的不足。InfiniBand 与以太网相同,是一种计算机网络通信标准,但它具有极高的吞吐量和极低的延迟,通常用于超级计算机的互联。英伟达的 Bluefield DPU 芯片可用于分担 CPU 的网络连接算力需求,从而提高云数据中心的效率,降低运营成本。

(3)CPU 方面,自主设计 Grace CPU 并推出 Grace Hopper 超级芯片,解决内存带宽瓶颈问题。采用 x86 CPU 的传统数据中心会受到 PCIe 总线规格的限制,CPU 到 GPU 的带宽较小,算效率受到影响;而 Grace Hopper 超级芯片提供自研 Grace CPU+GPU 相结合的一致内存模型,从而可以使用英伟达 NVLink-C2C 技术快速传输,其带宽是第 5 代 PCIe 带宽的 7 倍,极大提高了数据中心的运行性能。

7e293068-f2ce-11ed-90ce-dac502259ad0.png

相较于 A100 GPU,H100 性能再次大幅提升。在 H100 配备第四代 Tensor Core 和 Transformer引擎(FP8 精度),同上一代 A100 相比,AI 推理能力提升 30 倍。其核心采用的是 TSMC 目前最先进的 4nm 工艺,H100 使用双精度 Tensor Core 的 FLOPS 提升 3 倍。

7e4bf6b6-f2ce-11ed-90ce-dac502259ad0.png

7e7237ea-f2ce-11ed-90ce-dac502259ad0.png

在算力需求快速增长的进程中,国产 GPU 正面临机遇与挑战并存的局面。目前,国产 GPU 厂商的核心架构多为自研,难度极高,需投入海量资金以及高昂的人力和时间成本。由于我国 GPU 行业起步较晚,缺乏相应生态,目前同国际一流厂商仍存在较大差距。在中美摩擦加剧、经济全球化逆行的背景下,以海光信息、天数智芯、壁仞科技和摩尔线程等为代表的国内 GPU 厂商进展迅速,国产 GPU 自主可控未来可期。

7e8b9604-f2ce-11ed-90ce-dac502259ad0.png

7ea246a6-f2ce-11ed-90ce-dac502259ad0.png

以Open AI的算力基础设施为例,芯片层面 GPGPU 的需求最为直接受益,其次是 CPU、AI 推理芯片、FPGA 等。AI 服务器市场的扩容,同步带动高速网卡、HBM、DRAM、NAND、PCB 等需求提升。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4729

    浏览量

    128902
  • AI
    AI
    +关注

    关注

    87

    文章

    30763

    浏览量

    268914
  • 算力
    +关注

    关注

    1

    文章

    966

    浏览量

    14796

原文标题:大模型训练,英伟达Turing、Ampere和Hopper算力分析

文章出处:【微信号:AI_Architect,微信公众号:智能计算芯世界】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    通往AGI之路:揭秘英伟A100、A800、H800、V100在高性能计算与大模型训练中的霸主地位

    英伟前段时间发布GH 200包含 36 个 NVLink 开关,将 256 个 GH200 Grace Hopper 芯片和 144TB 的共享内存连接成一个单元。除此之外,英伟
    的头像 发表于 06-29 11:23 2.9w次阅读
    通往AGI之路:揭秘<b class='flag-5'>英伟</b><b class='flag-5'>达</b>A100、A800、H800、V100在高性能计算与大<b class='flag-5'>模型</b><b class='flag-5'>训练</b>中的霸主地位

    AIGC需求大爆发,英伟芯片已涨价近四成

    12月份开始上涨,截至2023年4月上半月,5个月价格累计涨幅20.0%。 目前,对于所有AI大模型而言,无论是推理还是训练,基本都是依赖英伟
    的头像 发表于 05-16 01:08 2925次阅读

    进一步解读英伟 Blackwell 架构、NVlink及GB200 超级芯片

    30 倍,能源效率提高了 25 倍。这些提升使得它能够更快地处理大规模的人工智能任务,加速模型训练和推理过程。 **2. **超级计算机 英伟推出的 DGX GB200 超级计算
    发表于 05-13 17:16

    英伟DPU的过“芯”之处

    ,从而在这两个领域更好地替代CPU,从而释放CPU的给到其他更多应用。英伟在DPU上的技术突破,来自于去年收购以色列芯片制造公司Mellanox之后,在这家公司的硬件基础上开发出
    发表于 03-29 14:42

    英伟H100 Transformer引擎加速AI训练 准确而且高达6倍性能

    Hopper 架构从头开始构建,凭借强大的和快速的内存来加速这些新一代 AI 工作负载,从而处理日益增长的网络和数据集。 Transformer 引擎是全新 Hopper 架构的
    的头像 发表于 04-01 09:24 4202次阅读

    火种初现的国产GPU,谁能突破封锁?

    事实上,英伟与AI可谓是缘分不浅,截至目前,英伟的GPU芯片正在为全球绝大多数的人工智能系统提供最基础的
    的头像 发表于 04-03 10:07 1927次阅读

    英伟a100显卡介绍

    英伟a100显卡介绍 英伟A100显卡是一款专为数据中心设计的显卡,采用了全新的
    的头像 发表于 08-07 17:59 8656次阅读

    英伟A100的优势分析

    英伟A100的优势分析 在大模型训练中,A100是非常强大的GPU。A100是英伟
    的头像 发表于 08-08 15:25 3274次阅读

    英伟A100的是多少?

    ,但 A100 的是前者的 20 倍。 A100是英伟推出的一款强大的数据中心GPU,采用全新的Ampere架构。它拥有高达6,912
    的头像 发表于 08-08 15:28 3.7w次阅读

    英伟全球首发超级AI芯片 训练模型成本更低

    黄仁勋向数千名开发者和图形专业人士发表讲话,宣布更新 GH200 Grace Hopper 超级芯片、英伟 AI Workbench,并将把生成式 AI 引入英伟
    的头像 发表于 08-09 14:42 1166次阅读

    模型“狂欢”之下,之困何解?

    打造一个AI大模型究竟需要多少算?公开数据显示,ChatGPT初始所需的就是1万块英伟A
    的头像 发表于 08-23 16:09 757次阅读

    英伟H200怎么样

    英伟H200的非常强大。作为新一代AI芯片,H200在性能上有了显著的提升,能够处理复杂的AI任务和大数据分析。然而,具体的
    的头像 发表于 03-07 16:15 2106次阅读

    英伟静候新品来临,亚马逊暂缓购买Grace Hopper

    今年3月,英伟发布了全新的Blackwell处理器,距离前任产品Hopper的发布不过短短一年。英伟首席执行官黄仁勋表示,新款产品在
    的头像 发表于 05-22 09:07 301次阅读

    亚马逊AWS暂缓订购英伟Grace Hopper,等待新品Grace Blackwel

    今年 3 月,英伟宣布了新款人工智能处理器Blackwell,比上一代Hopper提前不到一年面世。CEO黄仁勋表示,新产品在训练大规模语言模型
    的头像 发表于 05-22 12:03 638次阅读

    软银升级人工智能计算平台,安装4000颗英伟Hopper GPU

    软银公司宣布,其正在扩展的日本顶级人工智能计算平台已安装了约4000颗英伟Hopper GPU。这一举措显著提升了平台的计算能力。据悉,该平台自2023年9月开始运行,最初配备了大约2000颗
    的头像 发表于 11-04 16:18 430次阅读