0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅析三种主流深度神经网络

Dbwd_Imgtec 来源:未知 2023-05-15 14:20 次阅读

来源:青榴实验室


1、引子

深度神经网络(DNNs)最近在图像分类或语音识别等复杂机器学习任务中表现出的优异性能令人印象深刻。

在本文中,我们将了解深度神经网络的基础知识和三个最流行神经网络:多层神经网络(MLP),卷积神经网络(CNN)和递归神经网络(RNN)。


2、什么是深度神经网络

机器学习是一门多领域交叉学科,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。如果论及哪一个机器学习的领域最为热门,非人工智能莫属,这就是深度学习。深度学习框架又名深度神经网络,一个复杂的模式识别系统,在过去的几十年里,机器学习给我们的日常生活带来了巨大的影响,包括高效的网络搜索、自动驾驶系统、计算机视觉光学字符识别。

深度神经网络模型已经成为机器学习和人工智能的有力工具。深度神经网络(DNN)的输入层和输出层之间有多层的人工神经网络(ANN)。

深层神经网络的迅速发展应用致使语音识别错误率上较传统语音识别方法错误率减少30%(20年来最大降幅),同时也大幅削减了图像识别的错误率,自2011年以来深度学习图像识别的错误率从26%到3.5%,而人类是5%。


3、深度神经网络的基本原理

深度神经网络模型最初基于神经生物学的启发。生物神经元通过与树突的突触接触接收多个信号,并通过轴突发送单一的动作电位流。通过对输入模式进行分类,可以降低多个输入的复杂性。受这种输入输出方式的启发,人工神经网络模型由组合多个输入和单一的输出单元组成。神经网络以模拟人类大脑的功能为目标,并基于一个简单的人工神经元:输入信号的加权和的非线性函数(如max(0, value))。这些伪神经元被聚合成层,一层的输出成为序列中下一层的输入。

4、深度神经网络的“深”

深度神经网络在神经网络中采用了深度结构。“深”是指在层次数和单层单元数的深兼具较高复杂性的功能。云计算中的大型数据集可以通过使用额外的和更大的层来捕获更高级数据模式来构建更精确的模型。神经网络的两个阶段被称为训练(或学习)和推断(或预测),它们指的是发展和生产。开发人员选择神经网络的层数和类型,训练确定权值。

5、目前流行的深度神经网络有三种

5.1 多层感知器(MLP)

多层感知器(MLP)是一类前馈人工神经网络(ANN)。MLPs模型是最基本的深度神经网络,其将输入的多个数据集映射到单一的输出的数据集上,由一系列全连接层组成。每一层都是一组非线性函数,它们是前一层所有输出(完全连通)的加权和。功能函数:wKgZomTnn3yACyMvAAAMi5_-pmo603.png

wKgaomTpvqGAE8MbAAHnnrXL7LM054.png

5.2 卷积神经网络(CNN)

卷积神经网络(CNN,或ConvNet)是另一类深度神经网络。CNN最常用于计算机视觉。给定一系列来自现实世界的图像或视频AI系统利用CNN学习自动提取这些输入的特征来完成特定的任务,如图像分类、人脸认证、图像语义分割等。

与MLP中的完全连接层不同,在CNN模型中,一个或多个卷积层通过执行卷积操作从输入中提取简单特征。每一层都是一组非线性函数,这些函数的加权和位于前一层输出的空间附近子集的不同坐标上,允许权重被重用。

wKgZomTpvo6AG7xWAAEKdrNexL8911.png

应用各种卷积滤波器,CNN模型可以高水平准确地捕获输入数据,使其成为最受欢迎的计算机视觉应用技术,如图像分类(例如,AlexNet, VGG网络,ResNet, MobileNet)和目标检测(例如,Fast R-CNN, Mask R-CNN, YOLO, SSD)。AlexNet。在图像分类方面,作为2012年第一个赢得ImageNet挑战赛的CNN, AlexNet由5个卷积层和3个全连接层组成。AlexNet需要6100万个权重和7.24亿个mac(乘法加法计算)来对大小为227×227的图像进行分类。

VGG-16。为了达到更高的精度,vg -16被训练为一个更深层次的16层结构,由13个卷积层和3个全连通层组成,需要1.38亿权值和15.5G mac对大小为224×224的图像进行分类。

GoogleNet。为了提高准确性,同时减少DNN推理的计算,GoogleNet引入了一个由不同大小的过滤器组成的初始模块。google et比vg -16具有更好的精度性能,而处理相同大小的图像只需要700万权重和1.43G mac。

ResNet。最新的研究成果ResNet使用了“快捷”结构,达到了人类平均水平的准确率,前5名的错误率低于5%。“捷径”模块用于解决训练过程中的梯度消失问题,使训练具有更深结构的DNN模型成为可能。

近年来CNN的准确率和性能逐渐提高,应用于人们人工智能视觉任务的,超过了人类视觉的平均水平错误率低于5%。wKgZomTnn3yAX8_6AAOa_bw0Zwk001.png5.3递归神经网络(RNN)递归神经网络(RNN)是另一类使用顺序数据输入的人工神经网络。RNN是用来解决序列输入数据的时间序列问题的。RNN的输入由当前输入和之前的样本组成。因此,节点之间的连接沿时间序列形成有向图。RNN中的每个神经元都有一个内部存储器,它保存着来自前一个样本的计算信息wKgZomTnn3yAdN0DAAFa0t3z7-k216.pngRNN模型在处理输入长度不固定的数据方面具有优势,因此在自然语言处理中得到了广泛的应用。人工智能的任务是建立一个能够理解人类说的自然语言的系统,例如自然语言建模、单词嵌入和机器翻译。

在RNN中,每一层都是输出和前一层状态的加权和的非线性函数集合。RNN的基本单元称为“Cell”,每个Cell层由一系列的Cell组成,层层传递处理使RNN模型能够进行顺序处理。


6、深度神经网络应用

深度学习现在已经应用到生活各领域:

1.深度学习应用在音视频的识别上,几乎所有的商用语音识别都是深度学习来完成的,如自然语言理解方面,主要是使用一种叫做LSTM的深度学习方法。

2.深度学习应用于图像识别,目前识别准确率已经超越人类,深度学习成了图像识别的标配。其中图像识别中,应用最广的是人脸识别。

总之深度神经网络已经深入便捷了人们生活,各类自动驾驶车辆,各种类型的人工智能机器人,智能回答,智能翻译,天气预报,股票预测,人脸比对,声纹比对,等其他许多有趣的应用,比如智能插画,自动作诗,自动写作文,等都可以通过深度学习来完成深度神经网络。

END

欢迎加入Imagination GPU与人工智能交流2群

wKgZomTnn32ATq_bAABN8aBfIqc717.jpg

入群请加小编微信:eetrend89

(添加请备注公司名和职称)

推荐阅读 对话Imagination中国区董事长:以GPU为支点加强软硬件协同,助力数字化转型

Imagination携手飞桨等多家伙伴联合发布 AI Studio硬件生态专区

wKgZomTnn32ANuTYAAGo5T4MzkM492.jpg

Imagination Technologies是一家总部位于英国的公司,致力于研发芯片和软件知识产权(IP),基于Imagination IP的产品已在全球数十亿人的电话、汽车、家庭和工作 场所中使用。获取更多物联网、智能穿戴、通信汽车电子、图形图像开发等前沿技术信息,欢迎关注 Imagination Tech!


原文标题:浅析三种主流深度神经网络

文章出处:【微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • imagination
    +关注

    关注

    1

    文章

    573

    浏览量

    61316
收藏 人收藏

    评论

    相关推荐

    残差网络深度神经网络

    残差网络(Residual Network,通常简称为ResNet) 是深度神经网络的一 ,其独特的结构设计在解决深层网络训练中的梯度消失
    的头像 发表于 07-11 18:13 1071次阅读

    神经网络模型的优缺点

    神经网络模型是一常见的深度学习模型,它由输入层、两个隐藏层和输出层组成。本文将介绍神经网络
    的头像 发表于 07-11 10:58 566次阅读

    简单认识深度神经网络

    深度神经网络(Deep Neural Networks, DNNs)作为机器学习领域中的一重要技术,特别是在深度学习领域,已经取得了显著的成就。它们通过模拟人类大脑的处理方式,利用多
    的头像 发表于 07-10 18:23 1007次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一具有时间序列特性的神经网络,能
    的头像 发表于 07-05 09:52 559次阅读

    深度神经网络概述及其应用

    深度神经网络(Deep Neural Networks, DNNs)作为机器学习的一复杂形式,是广义人工神经网络(Artificial Neural Networks, ANNs)的
    的头像 发表于 07-04 16:08 936次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两非常重要的
    的头像 发表于 07-04 14:24 1267次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需
    的头像 发表于 07-04 13:20 840次阅读

    卷积神经网络与循环神经网络的区别

    深度学习领域,卷积神经网络(Convolutional Neural Networks, CNN)和循环神经网络(Recurrent Neural Networks, RNN)是两
    的头像 发表于 07-03 16:12 3190次阅读

    BP神经网络属于DNN吗

    属于。BP神经网络(Backpropagation Neural Network)是一基于误差反向传播算法的多层前馈神经网络,是深度学习(Deep Learning)领域中非常重要的
    的头像 发表于 07-03 10:18 745次阅读

    bp神经网络深度神经网络

    BP神经网络(Backpropagation Neural Network)是一常见的前馈神经网络,它使用反向传播算法来训练网络。虽然BP神经网络
    的头像 发表于 07-03 10:14 829次阅读

    卷积神经网络训练的是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 09:15 397次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原
    的头像 发表于 07-02 14:44 635次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两
    的头像 发表于 07-02 14:24 3651次阅读

    深度神经网络模型有哪些

    深度神经网络(Deep Neural Networks,DNNs)是一类具有多个隐藏层的神经网络,它们在许多领域取得了显著的成功,如计算机视觉、自然语言处理、语音识别等。以下是一些常见的深度
    的头像 发表于 07-02 10:00 1326次阅读

    详解深度学习、神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线,通过
    的头像 发表于 01-11 10:51 2025次阅读
    详解<b class='flag-5'>深度</b>学习、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用