多层陶瓷电容器(MLCC)核心原料采用的主要是钛酸钡基铁电体,由于存在靠近室温的铁电相变,使其介电常数温度稳定性比较差。因此,寻找温度和频率稳定性优异的新型巨介电材料成为近年来的热点,也成为我国攻克MLCC电子元器件卡脖子技术的一个突破口。在简单金属氧化物中进行给体受体掺杂,能够形成电子钉扎缺陷偶极效应,有望获得温度和频率稳定性优异的巨介电行为。这类极具发展潜力的新型巨介电材料得到了国内外学者的普遍关注。
图1金属氧化物巨介电材料体系在缺陷偶极冷冻温度Tf通常伴随着热激发弛豫行为(TADR),本文报道了低于2K的缺陷偶极冷冻温度Tf以及非常规TADR行为。
不同的掺杂体系表现出不同的巨介电弛豫行为和缺陷偶极冷冻温度Tf(如图1所示),对应于不同的电子钉扎状态。缺陷诱导新型巨介电材料的研发,需要更加深入地挖掘电子钉扎效应机制和调控方法。目前大部分研究体系都是利用主族元素对简单金属氧化物进行给体受体共掺杂。电子钉扎效应表现为缺陷能阱对电子的束缚,主要归功于库伦作用。基于这一点,研究团队额外引入电子自旋耦合形成复合作用,即通过磁性受体提供的局域电子自旋和给体提供的电荷自旋进行耦合。
图2 Co单掺杂、Co+Nb共掺、Co+Ta共掺SnO2(CSO,CNSO,CTSO)的巨介电行为
图3 磁性行为,AFM:反铁磁,PM:顺磁
SnO2掺杂体系的巨介电转变温度普遍在100K以上,为研究电子钉扎效应提供了很大的温度宽度窗口。因此研究团队选用SnO2为母体,同时以Co2+为磁性受体,分别以Nb5+和Ta5+为给体。如图2所示,Co单掺杂和Co+Nb、Co+Ta共掺SnO2都表现出了巨介电行为。其中前两者的Tf分别在25K和70K,而Co+Ta共掺体系在2K以上都保持温度和频率高稳定性的巨介电行为,并没有表现出巨介电转变行为,说明其巨介电转变温度在2K以下。这也是巨介电材料中首次观察到这种临界电子钉扎现象。如图3所示,Co单掺SnO2为反铁磁性,Co+Nb共掺SnO2变为顺磁性,而Co+Ta共掺SnO2处于反铁磁和顺磁共有的临界磁性状态,这个说明Co+Nb和Co+Ta提供的不同磁作用对体系的电子钉扎行为产生了显著的不同影响。
图4 缺陷偶极构型和磁性能计算结果及性能比较结果
如图4所示,理论计算表明Co单掺杂和Co+Nb、Co+Ta共掺SnO2的缺陷偶极状态都不一样。这和磁性能表征结果是一致的,同时也与临界电子钉扎效应正好对应。Co+Ta共掺SnO2的电子临界磁性状态形成了特殊的电子自旋耦合,使得电子从冷冻到热激发的能垒变得非常低,形成了平坦化的自由能能阱。这正是该体系表现出低于2K以下的非常规巨介电弛豫行为的原因。 该研究成果为进一步开发缺陷诱导巨介电电容材料和新型MLCC器件提供了重要的指导意义,Co+Ta共掺SnO2中表现出的优异巨介电行为有望应用于超低温电子电容元器件领域。
-
电容器
+关注
关注
64文章
6217浏览量
99529 -
电子元器件
+关注
关注
133文章
3334浏览量
105328 -
电荷
+关注
关注
1文章
628浏览量
36132
发布评论请先 登录
相关推荐
评论