如今蓝牙无线技术无处不在,被广泛应用于各种设备,细分市场涵盖蜂窝、PC、家庭娱乐、智能家居、可穿戴设备、医疗保健、物联网和汽车,而且应用的设备数量仍呈上升趋势。
ABI Research的统计数据表明,到2027年,蓝牙设备的年出货量预计将超过76亿件。汽车市场呈类似发展趋势,蓝牙在汽车娱乐、汽车访问/数字钥匙、轮胎监控等多种应用中的采用率越来越高。ABI Research预测,到2027年,汽车蓝牙设备的年出货量将超过1.8亿件。
蓝牙技术联盟(Bluetooth SIG)最近推出了5.4版本的蓝牙核心规范。此最新版本推出了一些令人兴奋的功能,这些功能将释放某些量大应用的潜力。电子货架标签(ESL)是一种领先且受到广泛讨论的应用。而另一种有望从这一新版本中大幅受益的应用是电动汽车(EV)的电池管理系统(BMS)。我们来一探究竟。
什么是电池管理系统(BMS)?
由于近来许多国家政府出台了减少二氧化碳排放以限制气候变化的法规,预计每年的电动汽车出货量将大幅增长。据彭博新能源财经数据,到2030年,全球电动汽车年出货量将达到3000万辆,到2040年,将达到6000万辆。
电池组是电动汽车的核心。电池组是由多个模块组成的复杂组件,每个模块包含数百个电池单元。电池组总共可能包含数千个电池单元。
BMS是电动汽车电池组的“大脑”,是电动汽车的关键组成部分,负责确保电动汽车高效和安全运行。其性能显著影响电动汽车的行驶里程和电池寿命。BMS的主要用途是管理电池的健康状况、性能和安全性。
以下是电动汽车BMS的主要功能:
1
//监测电池状态
BMS可持续监测电池的温度、电压、电流和其他参数。如果出现任何异常(如过热或过度充电),BMS会提醒驾驶员,并采取措施防止潜在危险。
2
//平衡电池单元
BMS可确保电池中的电池单元处于平衡状态,即电池单元的荷电状态相同。不平衡的电池单元会导致电池的性能、容量和使用寿命降低。
3
//电池单元保护
BMS可防止电池单元过度充电和放电,以免损坏电池并缩短电池寿命。此外,它还可以防止过热,并控制充电和放电速率,以保持电池的健康状况。
4
//荷电状态(SoC)估计
BMS会估算电池中的剩余电量,以便为驾驶员提供准确的里程估计,同时有助于优化电池的使用和充电行为。
5
//通信
BMS可与车辆中的其他系统(如电机控制器和中央单元)进行通信,以优化车辆的性能和安全性。
迁移到无线BMS有什么好处?
通常,BMS使用有线连接与车辆中的其他系统进行通信。BMS通过收集各种参数数据来监测电池单元。电池组中的所有电池单元和模块均通过多种电线和接头连接到中央BMS,重量和布线设计复杂性会明显增加。这会显著影响BMS的整体制造和装配成本。
随着电动汽车变得日益复杂,并且需要提升效率,降低成本和提升电池监测和控制的精确性,无线技术变得至关重要。这就是为何汽车行业转向无线BMS的原因,去除所有这些电线将带来以下好处:
1
//经济实用
无线BMS可降低系统的总体成本,因为无需复杂的布线和接头,而接头也可能成为故障源。因此,维护和维修成本也显著降低。
2
//灵活性
无线BMS在安装和放置方面具有灵活性。没有复杂的布线,便于安装和维护。此外,无线BMS更具可扩展性,并可提供各种外形尺寸,可采用不同数量的电池模块,以满足不同的电动汽车需求,所有这些都可以用同一个BMS解决方案来实现。
3
//实时监控
无线BMS可以实时监控电池的状态和性能,从而提供更准确和可靠的数据。这是由于无线芯片也可集成MCU功能。因此,大部分数据处理任务可以“迁移至边缘”,从而减轻中央处理器的负担并降低延迟。
4
//提高安全性
通过降低接线问题(如短路和接地故障)的风险,无线BMS提高了安全性。降低数据处理和诊断延迟,也有助于提高安全性。
5
//续航里程更长
去除接线和接头可明显缩小BMS的尺寸并减轻重量。重量减轻会延长电池的续航里程。尺寸更小,可为车内其他物品腾出更多空间,或者可以增加更多电池模块,这样也有助于延长电池寿命。
对于BMS来说,蓝牙5.4有哪些优势?
无线BMS考虑了多种无线解决方案。其中有一些是专有方案,专为无线BMS用例定制。但是,使用蓝牙等标准解决方案,特别是支持5.4版本的蓝牙核心规范,有显著优势。以下是蓝牙LE5.4适用于无线BMS的原因:
1
//高吞吐量
蓝牙可提供每秒超过1兆位的数据速率,而其他专有解决方案的速率通常远低于此水平。因此,蓝牙可以在更短的时间内传输更多数据,满足BMS需要将大量数据传输到中央处理单元,并随电池模块数量的增加而扩展的要求。数据速率更高还意味着延迟更低,这对安全性至关重要。
2
//同步的低延迟和可靠的连接
即使在嘈杂的环境中,蓝牙技术也能提供可靠的数据传输。基于蓝牙的无线BMS由多个与中央单元通信的电池模块组成。目前,电池组通常包含不到十个电池模块。但未来可能会增加到几十个。每个模块都需要高效和快速地向中央单元报告数据。需要在一瞬间诊断出损坏的电池单元,以避免过热等危险后果。
在传统的蓝牙LE拓扑中,中央设备可以与许多外围设备通信。但是,每个外围设备都需要等待,直到接受中央设备的轮询后才能发送数据。这可能会导致延迟不符合无线BMS要求,尤其是当电池模块数量增加时。
5.4版本的蓝牙核心规范引入了一项称为“带响应的周期性广播(PAwR)”的新功能,可解决此限制问题。借助此功能,中央设备(本例中为汽车中央装置)可以按固定的时间间隔发送广播信息包,这些信息包由所有或一组外围设备或观察器(电池模块)接收。这是改进后的广播版本,每个观察器都可以在预定义的响应时间回复中央设备。此外,40个可用无线电信道中的任何一个都可用于无线交换数据,使得通信更可靠,不受潜在干扰的影响。
3
//安全连接
蓝牙技术通过加密和身份验证提供安全通信,防止未经授权的访问,并确保车辆及其乘员的安全。在5.4版本蓝牙规范之前,无法加密广播数据。现在这一点可通过新的“加密广告数据”功能实现,这是对PAwR非常好的补充,实现更安全的通信。
4
//低功耗
蓝牙LE本质上是一种低功耗无线通信协议。此外,在使用PAwR时,中央单元会定期发送广播信息包,观察器只会在这些广播活动期间侦听,同时在间隔时段休眠。仅在要求其回复时,才会发送回复。这非常节能,尤其是对于电动汽车等电池供电设备而言。
5
//低成本
主要供应商提供的蓝牙LE芯片在各种应用中的出货量非常高,规模经济效应和高度摊销的开发成本使得售价较低。蓝牙LE芯片比专为无线BMS设计的专有无线芯片更便宜,专有无线芯片的规模经济效应有限,出货量更低。
6
//多源
使用蓝牙LE的好处在于,可以在供应链中使用多个供应商的芯片。这使得BMS和电动汽车制造商能够有第二个货源,以保障批量生产需求并继续应对价格压力。
BMS是汽车行业中的一个重要组成部分,负责确保电动汽车高效和安全地运行。无线BMS比有线设备更轻、更灵活,随着电池组的复杂性和尺寸不断变化,无线BMS的采用率也越来越高。由于功耗非常低,延迟更低,加上标准的大规模部署特性带来的供应链优势,蓝牙技术,特别是具有aWR的蓝牙LE5.4,是无线BMS的理想选择。随着电动汽车普及,基于蓝牙的无线BMS将在确保这些车辆的卓越性能和安全性方面发挥重要作用。
CEVA是可集成到SoC的蓝牙平台IP解决方案的领先提供商,迄今为止,为物联网、可穿戴设备、可听设备、智能家居、手机、工业和汽车等各个细分市场的数十亿蓝牙设备提供支持。CEVA提供蓝牙LE和双模IP平台,包括基带控制器、无线电和完整软件协议栈,以及用于满足大量应用需求的完整应用文件列表。
本文作者:Franz Dugand, Senior Director of Sales and Marketing, Wireless IoT BU, CEVA
关于CEVA
CEVA是排名前列的无线连接和智能传感技术以及集成IP解决方案授权商,旨在打造更智能、更安全、互联的世界。我们为传感器融合、图像增强、计算机视觉、语音输入和人工智能应用提供数字信号处理器、人工智能处理器、无线平台、加密内核和配套软件。这些技术与我们的Intrinsix IP集成服务一起提供给客户,帮助他们解决复杂和时间关键的集成电路设计项目。许多世界排名前列的半导体厂商、系统公司和OEM利用我们的技术和芯片设计技能,为移动、消费、汽车、机器人、工业、航天国防和物联网等各种终端市场开发高能效、智能、安全的互联设备。
我们基于DSP的解决方案包括移动、物联网和基础设施中的5G基带处理平台;摄像头设备的高级影像技术和计算机视觉;适用于多个物联网市场的音频/语音/话音应用和超低功耗的始终开启/感应应用。对于传感器融合,我们的Hillcrest Labs传感器处理技术为耳机、可穿戴设备、AR/VR、PC机、机器人、遥控器、物联网等市场提供广泛的传感器融合软件和惯性测量单元 (“IMU”) 解决方案。在无线物联网方面,我们的蓝牙(低功耗和双模)、Wi-Fi 4/5/6/6E (802.11n/ac/ax)、超宽带(UWB)、NB-IoT和GNSS 平台是业内授权较为广泛的连接平台。
-
dsp
+关注
关注
553文章
7984浏览量
348687 -
电池管理
+关注
关注
27文章
552浏览量
42951 -
蓝牙
+关注
关注
114文章
5803浏览量
170150 -
CEVA
+关注
关注
1文章
177浏览量
75929 -
电池管理系统
+关注
关注
41文章
508浏览量
33351 -
bms
+关注
关注
106文章
996浏览量
65896 -
低功耗蓝牙
+关注
关注
1文章
227浏览量
21318
原文标题:采用低功耗蓝牙的汽车电池管理系统
文章出处:【微信号:CEVA-IP,微信公众号:CEVA】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论