30万条数据插入插入数据库验证
实体类、mapper和配置文件定义
不分批次直接梭哈
循环逐条插入
MyBatis实现插入30万条数据
JDBC实现插入30万条数据
总结
本文主要讲述通过MyBatis、JDBC等做大数据量数据插入的案例和结果。
30万条数据插入插入数据库验证
实体类、mapper和配置文件定义
User实体
mapper接口
mapper.xml文件
jdbc.properties
sqlMapConfig.xml
不分批次直接梭哈
循环逐条插入
MyBatis实现插入30万条数据
JDBC实现插入30万条数据
总结
验证的数据库表结构如下:
CREATETABLE`t_user`( `id`int(11)NOTNULLAUTO_INCREMENTCOMMENT'用户id', `username`varchar(64)DEFAULTNULLCOMMENT'用户名称', `age`int(4)DEFAULTNULLCOMMENT'年龄', PRIMARYKEY(`id`) )ENGINE=InnoDBDEFAULTCHARSET=utf8COMMENT='用户信息表';
话不多说,开整!
基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
项目地址:https://github.com/YunaiV/ruoyi-vue-pro
视频教程:https://doc.iocoder.cn/video/
实体类、mapper和配置文件定义
User实体
/** *用户实体
* *@Authorzjq */ @Data publicclassUser{ privateintid; privateStringusername; privateintage; }
mapper接口
publicinterfaceUserMapper{ /** *批量插入用户 *@paramuserList */ voidbatchInsertUser(@Param("list")ListuserList); }
mapper.xml文件
insertintot_user(username,age)values ( #{item.username}, #{item.age} )
jdbc.properties
jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc//localhost:3306/test jdbc.username=root jdbc.password=root
sqlMapConfig.xml
基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
项目地址:https://github.com/YunaiV/yudao-cloud
视频教程:https://doc.iocoder.cn/video/
不分批次直接梭哈
MyBatis直接一次性批量插入30万条,代码如下:
@Test publicvoidtestBatchInsertUser()throwsIOException{ InputStreamresourceAsStream= Resources.getResourceAsStream("sqlMapConfig.xml"); SqlSessionFactorysqlSessionFactory=newSqlSessionFactoryBuilder().build(resourceAsStream); SqlSessionsession=sqlSessionFactory.openSession(); System.out.println("=====开始插入数据====="); longstartTime=System.currentTimeMillis(); try{ ListuserList=newArrayList<>(); for(inti=1;i<= 300000; i++) { User user = new User(); user.setId(i); user.setUsername("共饮一杯无 " + i); user.setAge((int) (Math.random() * 100)); userList.add(user); } session.insert("batchInsertUser", userList); // 最后插入剩余的数据 session.commit(); long spendTime = System.currentTimeMillis()-startTime; System.out.println("成功插入 30 万条数据,耗时:"+spendTime+"毫秒"); } finally { session.close(); } }
可以看到控制台输出:
Cause: com.mysql.jdbc.PacketTooBigException: Packet for query is too large (27759038 >yun 4194304). You can change this value on the server by setting the max_allowed_packet’ variable.
超出最大数据包限制了,可以通过调整max_allowed_packet限制来提高可以传输的内容,不过由于30万条数据超出太多,这个不可取,梭哈看来是不行了
既然梭哈不行那我们就一条一条循环着插入行不行呢
循环逐条插入
mapper接口和mapper文件中新增单个用户新增的内容如下:
/** *新增单个用户 *@paramuser */ voidinsertUser(Useruser);insertintot_user(username,age)values ( #{username}, #{age} )
调整执行代码如下:
@Test publicvoidtestCirculateInsertUser()throwsIOException{ InputStreamresourceAsStream= Resources.getResourceAsStream("sqlMapConfig.xml"); SqlSessionFactorysqlSessionFactory=newSqlSessionFactoryBuilder().build(resourceAsStream); SqlSessionsession=sqlSessionFactory.openSession(); System.out.println("=====开始插入数据====="); longstartTime=System.currentTimeMillis(); try{ for(inti=1;i<= 300000; i++) { User user = new User(); user.setId(i); user.setUsername("共饮一杯无 " + i); user.setAge((int) (Math.random() * 100)); // 一条一条新增 session.insert("insertUser", user); session.commit(); } long spendTime = System.currentTimeMillis()-startTime; System.out.println("成功插入 30 万条数据,耗时:"+spendTime+"毫秒"); } finally { session.close(); } }
执行后可以发现磁盘IO占比飙升,一直处于高位。
等啊等等啊等,好久还没执行完
先不管他了太慢了先搞其他的,等会再来看看结果吧。
two thousand year later …
控制台输出如下:
总共执行了14909367毫秒,换算出来是4小时八分钟。太慢了。。
还是优化下之前的批处理方案吧
MyBatis实现插入30万条数据
先清理表数据,然后优化批处理执行插入:
--清空用户表 TRUNCATEtablet_user;
以下是通过 MyBatis 实现 30 万条数据插入代码实现:
/** *分批次批量插入 *@throwsIOException */ @Test publicvoidtestBatchInsertUser()throwsIOException{ InputStreamresourceAsStream= Resources.getResourceAsStream("sqlMapConfig.xml"); SqlSessionFactorysqlSessionFactory=newSqlSessionFactoryBuilder().build(resourceAsStream); SqlSessionsession=sqlSessionFactory.openSession(); System.out.println("=====开始插入数据====="); longstartTime=System.currentTimeMillis(); intwaitTime=10; try{ ListuserList=newArrayList<>(); for(inti=1;i<= 300000; i++) { User user = new User(); user.setId(i); user.setUsername("共饮一杯无 " + i); user.setAge((int) (Math.random() * 100)); userList.add(user); if (i % 1000 == 0) { session.insert("batchInsertUser", userList); // 每 1000 条数据提交一次事务 session.commit(); userList.clear(); // 等待一段时间 Thread.sleep(waitTime * 1000); } } // 最后插入剩余的数据 if(!CollectionUtils.isEmpty(userList)) { session.insert("batchInsertUser", userList); session.commit(); } long spendTime = System.currentTimeMillis()-startTime; System.out.println("成功插入 30 万条数据,耗时:"+spendTime+"毫秒"); } catch (Exception e) { e.printStackTrace(); } finally { session.close(); } }
使用了 MyBatis 的批处理操作,将每 1000 条数据放在一个批次中插入,能够较为有效地提高插入速度。同时请注意在循环插入时要带有合适的等待时间和批处理大小,以防止出现内存占用过高等问题。此外,还需要在配置文件中设置合理的连接池和数据库的参数,以获得更好的性能。
在上面的示例中,我们每插入1000行数据就进行一次批处理提交,并等待10秒钟。这有助于控制内存占用,并确保插入操作平稳进行。
五十分钟执行完毕,时间主要用在了等待上。
如果低谷时期执行,CPU和磁盘性能又足够的情况下,直接批处理不等待执行:
/** *分批次批量插入 *@throwsIOException */ @Test publicvoidtestBatchInsertUser()throwsIOException{ InputStreamresourceAsStream= Resources.getResourceAsStream("sqlMapConfig.xml"); SqlSessionFactorysqlSessionFactory=newSqlSessionFactoryBuilder().build(resourceAsStream); SqlSessionsession=sqlSessionFactory.openSession(); System.out.println("=====开始插入数据====="); longstartTime=System.currentTimeMillis(); intwaitTime=10; try{ ListuserList=newArrayList<>(); for(inti=1;i<= 300000; i++) { User user = new User(); user.setId(i); user.setUsername("共饮一杯无 " + i); user.setAge((int) (Math.random() * 100)); userList.add(user); if (i % 1000 == 0) { session.insert("batchInsertUser", userList); // 每 1000 条数据提交一次事务 session.commit(); userList.clear(); } } // 最后插入剩余的数据 if(!CollectionUtils.isEmpty(userList)) { session.insert("batchInsertUser", userList); session.commit(); } long spendTime = System.currentTimeMillis()-startTime; System.out.println("成功插入 30 万条数据,耗时:"+spendTime+"毫秒"); } catch (Exception e) { e.printStackTrace(); } finally { session.close(); } }
则24秒可以完成数据插入操作:
可以看到短时CPU和磁盘占用会飙高。
把批处理的量再调大一些调到5000,在执行:
13秒插入成功30万条,直接芜湖起飞
JDBC实现插入30万条数据
JDBC循环插入的话跟上面的mybatis逐条插入类似,不再赘述。
以下是 Java 使用 JDBC 批处理实现 30 万条数据插入的示例代码。请注意,该代码仅提供思路,具体实现需根据实际情况进行修改。
/** *JDBC分批次批量插入 *@throwsIOException */ @Test publicvoidtestJDBCBatchInsertUser()throwsIOException{ Connectionconnection=null; PreparedStatementpreparedStatement=null; StringdatabaseURL="jdbc//localhost:3306/test"; Stringuser="root"; Stringpassword="root"; try{ connection=DriverManager.getConnection(databaseURL,user,password); //关闭自动提交事务,改为手动提交 connection.setAutoCommit(false); System.out.println("=====开始插入数据====="); longstartTime=System.currentTimeMillis(); StringsqlInsert="INSERTINTOt_user(username,age)VALUES(?,?)"; preparedStatement=connection.prepareStatement(sqlInsert); Randomrandom=newRandom(); for(inti=1;i<= 300000; i++) { preparedStatement.setString(1, "共饮一杯无 " + i); preparedStatement.setInt(2, random.nextInt(100)); // 添加到批处理中 preparedStatement.addBatch(); if (i % 1000 == 0) { // 每1000条数据提交一次 preparedStatement.executeBatch(); connection.commit(); System.out.println("成功插入第 "+ i+" 条数据"); } } // 处理剩余的数据 preparedStatement.executeBatch(); connection.commit(); long spendTime = System.currentTimeMillis()-startTime; System.out.println("成功插入 30 万条数据,耗时:"+spendTime+"毫秒"); } catch (SQLException e) { System.out.println("Error: " + e.getMessage()); } finally { if (preparedStatement != null) { try { preparedStatement.close(); } catch (SQLException e) { e.printStackTrace(); } } if (connection != null) { try { connection.close(); } catch (SQLException e) { e.printStackTrace(); } } } }
上述示例代码中,我们通过 JDBC 连接 MySQL 数据库,并执行批处理操作插入数据。具体实现步骤如下:
获取数据库连接。
创建 Statement 对象。
定义 SQL 语句,使用 PreparedStatement 对象预编译 SQL 语句并设置参数。
执行批处理操作。
处理剩余的数据。
关闭 Statement 和 Connection 对象。
使用setAutoCommit(false) 来禁止自动提交事务,然后在每次批量插入之后手动提交事务。每次插入数据时都新建一个 PreparedStatement 对象以避免状态不一致问题。在插入数据的循环中,每 10000 条数据就执行一次 executeBatch() 插入数据。
另外,需要根据实际情况优化连接池和数据库的相关配置,以防止连接超时等问题。
总结
实现高效的大量数据插入需要结合以下优化策略(建议综合使用):
1.批处理: 批量提交SQL语句可以降低网络传输和处理开销,减少与数据库交互的次数。在Java中可以使用Statement或者PreparedStatement的addBatch()方法来添加多个SQL语句,然后一次性执行executeBatch()方法提交批处理的SQL语句。
在循环插入时带有适当的等待时间和批处理大小,从而避免内存占用过高等问题:
设置适当的批处理大小:批处理大小指在一次插入操作中插入多少行数据。如果批处理大小太小,插入操作的频率将很高,而如果批处理大小太大,可能会导致内存占用过高。通常,建议将批处理大小设置为1000-5000行,这将减少插入操作的频率并降低内存占用。
采用适当的等待时间:等待时间指在批处理操作之间等待的时间量。等待时间过短可能会导致内存占用过高,而等待时间过长则可能会延迟插入操作的速度。通常,建议将等待时间设置为几秒钟到几十秒钟之间,这将使操作变得平滑且避免出现内存占用过高等问题。
可以考虑使用一些内存优化的技巧,例如使用内存数据库或使用游标方式插入数据,以减少内存占用。
总的来说,选择适当的批处理大小和等待时间可以帮助您平稳地进行插入操作,避免出现内存占用过高等问题。
2.索引: 在大量数据插入前暂时去掉索引,最后再打上,这样可以大大减少写入时候的更新索引的时间。
3.数据库连接池: 使用数据库连接池可以减少数据库连接建立和关闭的开销,提高性能。在没有使用数据库连接池的情况,记得在finally中关闭相关连接。
数据库参数调整:增加MySQL数据库缓冲区大小、配置高性能的磁盘和I/O等。
-
接口
+关注
关注
33文章
8580浏览量
151044 -
大数据
+关注
关注
64文章
8884浏览量
137409 -
mybatis
+关注
关注
0文章
60浏览量
6711
原文标题:高效方案:30万条数据插入 MySQL 仅需13秒
文章出处:【微信号:芋道源码,微信公众号:芋道源码】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论