0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

YOLOv7训练自己的数据集包括哪些

新机器视觉 来源:新机器视觉 2023-05-29 15:18 次阅读

YOLOv7训练自己的数据集整个过程主要包括:环境安装—制作数据集—模型训练—模型测试—模型推理

一、准备深度学习环境

本人的笔记本电脑系统是:Windows10

首先下载YOLOv7的代码,手动下载zip或是git clone 远程仓库,本人下载的是YOLOv7的0.1版本代码:

https://github.com/WongKinYiu/yolov7

代码文件夹中会有requirements.txt文件,里面描述了所需要的安装包。

本文最终安装的pytorch版本是1.8.1,torchvision版本是0.9.1,python是3.7.10,其他的依赖库按照requirements.txt文件安装即可。

18c028f6-fc80-11ed-90ce-dac502259ad0.png

二、 准备自己的数据集

本人标注的数据格式是VOC,而YOLOv7能够直接使用的是YOLO格式的数据,因此下面将介绍如何将自己的数据集转换成可以直接让YOLOv7进行使用。

1、创建数据集

在YOLOv7文件夹中的data目录下创建mydata文件夹(名字可以自定义),目录结构如下,将之前labelImg标注好的xml文件和图片放到对应目录下

mydata

…images # 存放图片

…xml # 存放图片对应的xml文件

…dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)

示例如下:

mydata文件夹下内容如下:

18ddbd4e-fc80-11ed-90ce-dac502259ad0.png

image为VOC数据集格式中的JPEGImages,内容如下:

18ea5c98-fc80-11ed-90ce-dac502259ad0.png

xml文件夹下面为.xml文件(标注工具采用labelImage),内容如下:

18fe56b2-fc80-11ed-90ce-dac502259ad0.png

dataSet 文件夹下面存放训练集、验证集、测试集的划分,通过脚本生成,可以创建一个split_train_val.py文件,代码内容如下:

# coding:utf-8
 
import os
import random
import argparse
 
parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='xml', type=str, help='input xml label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='dataSet', type=str, help='output txt label path')
opt = parser.parse_args()
 
trainval_percent = 1.0
train_percent = 0.9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
  os.makedirs(txtsavepath)
 
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
 
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
 
for i in list_index:
  name = total_xml[i][:-4] + '
'
  if i in trainval:
    file_trainval.write(name)
    if i in train:
      file_train.write(name)
    else:
      file_val.write(name)
  else:
    file_test.write(name)
 
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

运行代码后,在dataSet 文件夹下生成下面四个txt文档:

191167fc-fc80-11ed-90ce-dac502259ad0.png

三个txt文件里面的内容如下:

191c40aa-fc80-11ed-90ce-dac502259ad0.png

2、转换数据格式

接下来准备labels,把数据集格式转换成yolo_txt格式,即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。格式如下:

1939fd84-fc80-11ed-90ce-dac502259ad0.png

创建voc_label.py文件,将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中,代码内容如下:

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd
 
sets = ['train', 'val', 'test']
classes = ["a", "b"]  # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)
 
def convert(size, box):
  dw = 1. / (size[0])
  dh = 1. / (size[1])
  x = (box[0] + box[1]) / 2.0 - 1
  y = (box[2] + box[3]) / 2.0 - 1
  w = box[1] - box[0]
  h = box[3] - box[2]
  x = x * dw
  w = w * dw
  y = y * dh
  h = h * dh
  return x, y, w, h
 
def convert_annotation(image_id):
  in_file = open('data/mydata/xml/%s.xml' % (image_id), encoding='UTF-8')
  out_file = open('data/mydata/labels/%s.txt' % (image_id), 'w')
  tree = ET.parse(in_file)
  root = tree.getroot()
  size = root.find('size')
  w = int(size.find('width').text)
  h = int(size.find('height').text)
  for obj in root.iter('object'):
    # difficult = obj.find('difficult').text
    difficult = obj.find('Difficult').text
    cls = obj.find('name').text
    if cls not in classes or int(difficult) == 1:
      continue
    cls_id = classes.index(cls)
    xmlbox = obj.find('bndbox')
    b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
       float(xmlbox.find('ymax').text))
    b1, b2, b3, b4 = b
    # 标注越界修正
    if b2 > w:
      b2 = w
    if b4 > h:
      b4 = h
    b = (b1, b2, b3, b4)
    bb = convert((w, h), b)
    out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '
')
 
wd = getcwd()
for image_set in sets:
  if not os.path.exists('data/mydata/labels/'):
    os.makedirs('data/mydata/labels/')
  image_ids = open('data/mydata/dataSet/%s.txt' % (image_set)).read().strip().split()
  list_file = open('mydata/%s.txt' % (image_set), 'w')
  for image_id in image_ids:
    list_file.write(abs_path + '/mydata/images/%s.jpg
' % (image_id))
    convert_annotation(image_id)
  list_file.close()

3、配置文件

1)数据集的配置

在YOLOv7目录下的data文件夹下新建一个mydata.yaml文件(可以自定义命名),用来存放训练集和验证集的划分文件(train.txt和val.txt)

这两个文件是通过运行voc_label.py代码生成的,然后是目标的类别数目和具体类别列表,mydata.yaml内容如下:

1948e498-fc80-11ed-90ce-dac502259ad0.png

2) 选择一个你需要的模型

在YOLOv7目录下的cfg/deploy文件夹下是模型的配置文件,这边提供yolov7、yolov7-d6、yolov7-e6、yolov7-e6e、yolov7x等多个版本,假设采用yolov7x.yaml,只用修改一个参数,把nc改成自己的类别数,需要取整(可选) 如下:

1953b396-fc80-11ed-90ce-dac502259ad0.png

至此,自定义数据集已创建完毕,接下来就是训练模型了。

三、模型训练

1、下载预训练模型

在YOLOv7的GitHub开源网址上下载对应版本的模型

19653850-fc80-11ed-90ce-dac502259ad0.png

2、训练

在正式开始训练之前,需要对train.py进行以下修改:

197b27b4-fc80-11ed-90ce-dac502259ad0.png

以上参数解释如下:

epochs:指的就是训练过程中整个数据集将被迭代多少次,显卡不行你就调小点。

batch-size:一次看完多少张图片才进行权重更新,梯度下降的mini-batch,显卡不行你就调小点。

cfg:存储模型结构的配置文件

data:存储训练、测试数据的文件

img-size:输入图片宽高,显卡不行你就调小点。

之后运行训练命令如下:

python train.py --img 640 --batch 32 --epoch 300 --data data/mydata.yaml --cfg cfg/deploy/yolov7x.yaml --weights weights/yolov7x.pt --device '0' 

四、模型测试

评估模型好坏就是在有标注的测试集或者验证集上进行模型效果的评估,在目标检测中最常使用的评估指标为mAP。在test.py文件中指定数据集配置文件和训练结果模型,如下:

19880d8a-fc80-11ed-90ce-dac502259ad0.png

通过下面的命令进行模型测试:

python test.py --data data/mydata.yaml --weights runs/exp1/weights/best.pt --augment

模型测试效果如下:

19b9c71c-fc80-11ed-90ce-dac502259ad0.png

五、模型推理

最后,模型在没有标注的数据集上进行推理,在detect.py文件中指定测试图片和测试模型的路径

其他参数(img_size、置信度object confidence threshold、IOU threshold for NMS)可自行修改,如下:

19cbc908-fc80-11ed-90ce-dac502259ad0.png

使用下面的命令,其中,weights使用最满意的训练模型即可,source则提供一个包含所有测试图片的文件夹路径即可。

 python detect.py --weights runs/exp1/weights/best.pt --source inference/images/ --device 0,1

测试完毕后,每个测试图片会在指定的inference/output输出文件夹中生成结果图片文件,如下:

19d8608c-fc80-11ed-90ce-dac502259ad0.png

审核编辑:彭静

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 模型
    +关注

    关注

    1

    文章

    3108

    浏览量

    48646
  • 代码
    +关注

    关注

    30

    文章

    4719

    浏览量

    68211
  • 数据集
    +关注

    关注

    4

    文章

    1200

    浏览量

    24617

原文标题:YOLOv7训练自己的数据集(超详细)

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    YOLOV7网络架构解读

    继美团发布YOLOV6之后,YOLO系列原作者也发布了YOLOV7
    的头像 发表于 11-29 10:00 1732次阅读
    <b class='flag-5'>YOLOV7</b>网络架构解读

    maixcam部署yolov5s 自定义模型

    部分不一样。 获得自定义训练得到的yolov5s onnx模型 准备自定义数据(博主用的是VOC数据
    发表于 04-23 15:43

    CV之YOLOv3:深度学习之计算机视觉神经网络Yolov3-5clessses训练自己数据全程记录

    CV之YOLOv3:深度学习之计算机视觉神经网络Yolov3-5clessses训练自己数据
    发表于 12-24 11:51

    使用YOLOv3训练BDD100K数据之开始训练

    (三)使用YOLOv3训练BDD100K数据之开始训练
    发表于 05-12 13:38

    怎样使用PyTorch Hub去加载YOLOv5模型

    在Python>=3.7.0环境中安装requirements.txt,包括PyTorch>=1.7。模型和数据从最新的 YOLOv5版本自动下载。简单示例此示例从
    发表于 07-22 16:02

    YOLOv6中的用Channel-wise Distillation进行的量化感知训练

    预测任务很有价值。  作者对一些密集的预测任务进行了实验,包括语义分割和目标检测。实验表明提出的方法大大优于最先进的蒸馏方法,并且在训练期间需要更少的计算成本。特别是,在COCO 数据
    发表于 10-09 16:25

    yolov7 onnx模型在NPU上太慢了怎么解决?

    ://github.com/WongKinYiu/yolov7/releases下载yolov7-tiny.pt ,并重命名yolov7tiny.pt2.将yolov7tiny.pt转
    发表于 04-04 06:13

    无法使用MYRIAD在OpenVINO trade中运行YOLOv7自定义模型怎么解决?

    无法确定如何将 YOLOv7 模型的重量(.pt 文件)转换为OpenVINO™中间表示 (IR) 并推断有 MYRIAD 的 IR。 分辨率 转换使用此 GitHub* 存储库
    发表于 08-15 08:29

    深度解析YOLOv7的网络结构

    最近,Scaled-YOLOv4的作者(也是后来的YOLOR的作者)和YOLOv4的作者AB大佬再次联手推出了YOLOv7,目前来看,这一版的YOLOv7是一个比较正统的YOLO续作,
    的头像 发表于 09-14 11:16 7456次阅读

    一文彻底搞懂YOLOv8【网络结构+代码+实操】

    从上面可以看出,YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。
    的头像 发表于 06-15 17:15 1.2w次阅读
    一文彻底搞懂<b class='flag-5'>YOLOv</b>8【网络结构+代码+实操】

    yolov5和YOLOX正负样本分配策略

    整体上在正负样本分配中,yolov7的策略算是yolov5和YOLOX的结合。因此本文先从yolov5和YOLOX正负样本分配策略分析入手,后引入到YOLOv7的解析中。
    发表于 08-14 11:45 2154次阅读
    <b class='flag-5'>yolov</b>5和YOLOX正负样本分配策略

    使用OpenVINO优化并部署训练好的YOLOv7模型

    在《英特尔锐炫 显卡+ oneAPI 和 OpenVINO 实现英特尔 视频 AI 计算盒训推一体-上篇》一文中,我们详细介绍基于英特尔 独立显卡搭建 YOLOv7 模型的训练环境,并完成了 YOLOv7 模型
    的头像 发表于 08-25 11:08 1414次阅读
    使用OpenVINO优化并部署<b class='flag-5'>训练</b>好的<b class='flag-5'>YOLOv7</b>模型

    详细解读YOLOV7网络架构设计

    YOLOV7提出了辅助头的一个训练方法,主要目的是通过增加训练成本,提升精度,同时不影响推理的时间,因为辅助头只会出现在训练过程中。
    发表于 11-27 10:45 719次阅读
    详细解读<b class='flag-5'>YOLOV7</b>网络架构设计

    PyTorch如何训练自己数据

    数据。本文将深入解读如何使用PyTorch训练自己数据
    的头像 发表于 07-02 14:09 1162次阅读

    如何训练自己的AI大模型

    训练AI大模型之前,需要明确自己的具体需求,比如是进行自然语言处理、图像识别、推荐系统还是其他任务。 二、数据收集与预处理 数据收集 根据任务需求,收集并准备好足够的
    的头像 发表于 10-23 15:07 328次阅读