0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Verilog FFT设计方案

冬至子 来源:数字IC与好好生活的两居室 作者:除夕之夜啊 2023-06-01 11:29 次阅读

FFT(Fast Fourier Transform),快速傅立叶变换,是一种 DFT(离散傅里叶变换)的高效算法。在以时频变换分析为基础的数字处理方法中,有着不可替代的作用。

FFT 原理

◆公式推导

DFT 的运算公式为:

图片

其中,

图片

将离散傅里叶变换公式拆分成奇偶项,则前 N/2 个点可以表示为:

图片

同理,后 N/2 个点可以表示为:

图片

由此可知,后 N/2 个点的值完全可以通过计算前 N/2 个点时的中间过程值确定。对 A[k] 与 B[k] 继续进行奇偶分解,直至变成 2 点的 DFT,这样就可以避免很多的重复计算,实现了快速离散傅里叶变换(FFT)的过程。

◆算法结构

8 点 FFT 计算的结构示意图如下。

由图可知,只需要简单的计算几次乘法和加法,便可完成离散傅里叶变换过程,而不是对每个数据进行繁琐的相乘和累加。

图片

◆重要特性

(1) 级的概念

每分割一次,称为一级运算。

设 FFT 运算点数为 N,共有 M 级运算,则它们满足:

图片

每一级运算的标识为 m = 0, 1, 2, ..., M-1。

为了便于分割计算,FFT 点数 N 的取值经常为 2 的整数次幂。

(2) 蝶形单元

FFT 计算结构由若干个蝶形运算单元组成,每个运算单元示意图如下:

图片

蝶形单元的输入输出满足:

图片

其中,图片

每一个蝶形单元运算时,进行了一次乘法和两次加法。

每一级中,均有 N/2 个蝶形单元。

故完成一次 FFT 所需要的乘法次数和加法次数分别为:

图片

(3) 组的概念

每一级 N/2 个蝶形单元可分为若干组,每一组有着相同的结构与图片因子分布。

例如 m=0 时,可以分为 N/2=4 组。

m=1 时,可以分为 N/4=2 组。

m=M-1 时,此时只能分为 1 组。

(4) 图片因子分布

图片因子存在于 m 级,其中 图片

在 8 点 FFT 第二级运算中,即 m=1 ,蝶形运算因子可以化简为:

图片

(5) 码位倒置

对于 N=8 点的 FFT 计算,X(0) ~ X(7) 位置对应的 2 进制码为:

X(000), X(001), X(010), X(011), X(100), X(101), X(110), X(111)

将其位置的 2 进制码进行翻转:

X(000), X(100), X(010), X(110), X(001), X(101), X(011), X(111)

此时位置对应的 10 进制为:

X(0), X(4), X(2), X(6), X(1), X(5), X(3), X(7)

恰好对应 FFT 第一级输入数据的顺序。

该特性有利于 FFT 的编程实现。


FFT 设计

◆设计说明

为了利用仿真简单的说明 FFT 的变换过程,数据点数取较小的值 8。

如果数据是串行输入,需要先进行缓存,所以设计时数据输入方式为并行。

数据输入分为实部和虚部共 2 部分,所以计算结果也分为实部和虚部。

设计采用流水结构,暂不考虑资源消耗的问题。

为了使设计结构更加简单,这里做一步妥协,乘法计算直接使用乘号。如果 FFT 设计应用于实际,一定要将乘法结构换成可以流水的乘法器,或使用官方提供的效率较高的乘法器 IP。

◆蝶形单元设计

蝶形单元为定点运算,需要对旋转因子进行定点量化。

借助 matlab 将旋转因子扩大 8192 倍(左移 13 位),可参考附录。

为了防止蝶形运算中的乘法和加法导致位宽逐级增大,每一级运算完成后,要对输出数据进行固定位宽的截位,也可去掉旋转因子倍数增大而带来的影响。

代码如下:

`timescale 1ns/100ps
/**************** butter unit *************************
Xm(p) ------------------------ > Xm+1(p)
           -        - >
             -    -
                -
              -   -
            -        - >
Xm(q) ------------------------ > Xm+1(q)
      Wn          -1
*//////////////////////////////////////////////////////
module butterfly
    (
     input                       clk,
     input                       rstn,
     input                       en,
     input signed [23:0]         xp_real, // Xm(p)
     input signed [23:0]         xp_imag,
     input signed [23:0]         xq_real, // Xm(q)
     input signed [23:0]         xq_imag,
     input signed [15:0]         factor_real, // Wnr
     input signed [15:0]         factor_imag,


     output                      valid,
     output signed [23:0]        yp_real, //Xm+1(p)
     output signed [23:0]        yp_imag,
     output signed [23:0]        yq_real, //Xm+1(q)
     output signed [23:0]        yq_imag);


    reg [4:0]                    en_r ;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            en_r   <= 'b0 ;
        end
        else begin
            en_r   <= {en_r[3:0], en} ;
        end
    end


    //=====================================================//
    //(1.0) Xm(q) mutiply and Xm(p) delay
    reg signed [39:0] xq_wnr_real0;
    reg signed [39:0] xq_wnr_real1;
    reg signed [39:0] xq_wnr_imag0;
    reg signed [39:0] xq_wnr_imag1;
    reg signed [39:0] xp_real_d;
    reg signed [39:0] xp_imag_d;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            xp_real_d    <= 'b0;
            xp_imag_d    <= 'b0;
            xq_wnr_real0 <= 'b0;
            xq_wnr_real1 <= 'b0;
            xq_wnr_imag0 <= 'b0;
            xq_wnr_imag1 <= 'b0;
        end
        else if (en) begin
            xq_wnr_real0 <= xq_real * factor_real;
            xq_wnr_real1 <= xq_imag * factor_imag;
            xq_wnr_imag0 <= xq_real * factor_imag;
            xq_wnr_imag1 <= xq_imag * factor_real;
            //expanding 8192 times as Wnr
            xp_real_d    <= {{4{xp_real[23]}}, xp_real[22:0], 13'b0}; 
            xp_imag_d    <= {{4{xp_imag[23]}}, xp_imag[22:0], 13'b0};
        end
    end


    //(1.1) get Xm(q) mutiplied-results and Xm(p) delay again
    reg signed [39:0] xp_real_d1;
    reg signed [39:0] xp_imag_d1;
    reg signed [39:0] xq_wnr_real;
    reg signed [39:0] xq_wnr_imag;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            xp_real_d1     <= 'b0;
            xp_imag_d1     <= 'b0;
            xq_wnr_real    <= 'b0 ;
            xq_wnr_imag    <= 'b0 ;
        end
        else if (en_r[0]) begin
            xp_real_d1     <= xp_real_d;
            xp_imag_d1     <= xp_imag_d;
            //提前设置好位宽余量,防止数据溢出
            xq_wnr_real    <= xq_wnr_real0 - xq_wnr_real1 ; 
            xq_wnr_imag    <= xq_wnr_imag0 + xq_wnr_imag1 ;
      end
    end


   //======================================================//
   //(2.0) butter results
    reg signed [39:0] yp_real_r;
    reg signed [39:0] yp_imag_r;
    reg signed [39:0] yq_real_r;
    reg signed [39:0] yq_imag_r;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            yp_real_r      <= 'b0;
            yp_imag_r      <= 'b0;
            yq_real_r      <= 'b0;
            yq_imag_r      <= 'b0;
        end
        else if (en_r[1]) begin
            yp_real_r      <= xp_real_d1 + xq_wnr_real;
            yp_imag_r      <= xp_imag_d1 + xq_wnr_imag;
            yq_real_r      <= xp_real_d1 - xq_wnr_real;
            yq_imag_r      <= xp_imag_d1 - xq_wnr_imag;
        end
    end


    //(3) discard the low 13bits because of Wnr
    assign yp_real = {yp_real_r[39], yp_real_r[13+23:13]};
    assign yp_imag = {yp_imag_r[39], yp_imag_r[13+23:13]};
    assign yq_real = {yq_real_r[39], yq_real_r[13+23:13]};
    assign yq_imag = {yq_imag_r[39], yq_imag_r[13+23:13]};
    assign valid   = en_r[2];

endmodule

◆顶层例化

根据 FFT 算法结构示意图,将蝶形单元例化,完成最后的 FFT 功能。

可根据每一级蝶形单元的输入输出对应关系,依次手动例化 12 次,也可利用 generate 进行例化,此时就需要非常熟悉 FFT 中“组”和“级”的特点:

(1) 8 点 FFT 设计,需要 3 级运算,每一级有 4 个蝶形单元,每一级的组数目分别是 4、2、1。

(2) 每一级的组内一个蝶形单元中两个输入端口的距离恒为 图片(m 为级标号,对应左移运算 1<<< span="">m),组内两个蝶形单元的第一个输入端口间的距离为 1。

(3) 每一级相邻组间的第一个蝶形单元的第一个输入端口的距离为 图片(对应左移运算 2<<< span="">m)。

例化代码如下。

其中,矩阵信号 xm_real(xm_imag)的一维、二维地址是代表级和组的标识。

在判断信号端口之间的连接关系时,使用了看似复杂的判断逻辑,而且还带有乘号,其实最终生成的电路和手动编写代码例化 12 个蝶形单元的方式是完全相同的。因为 generate 中的变量只是辅助生成实际的电路,相关值的计算判断都已经在编译时完成。这些变量更不会生成实际的电路,只是为更快速的模块例化提供了一种方法。

timescale 1ns/100ps
module fft8 (
    input                    clk,
    input                    rstn,
    input                    en,


    input signed [23:0]      x0_real,
    input signed [23:0]      x0_imag,
    input signed [23:0]      x1_real,
    input signed [23:0]      x1_imag,
    input signed [23:0]      x2_real,
    input signed [23:0]      x2_imag,
    input signed [23:0]      x3_real,
    input signed [23:0]      x3_imag,
    input signed [23:0]      x4_real,
    input signed [23:0]      x4_imag,
    input signed [23:0]      x5_real,
    input signed [23:0]      x5_imag,
    input signed [23:0]      x6_real,
    input signed [23:0]      x6_imag,
    input signed [23:0]      x7_real,
    input signed [23:0]      x7_imag,


    output                   valid,
    output signed [23:0]     y0_real,
    output signed [23:0]     y0_imag,
    output signed [23:0]     y1_real,
    output signed [23:0]     y1_imag,
    output signed [23:0]     y2_real,
    output signed [23:0]     y2_imag,
    output signed [23:0]     y3_real,
    output signed [23:0]     y3_imag,
    output signed [23:0]     y4_real,
    output signed [23:0]     y4_imag,
    output signed [23:0]     y5_real,
    output signed [23:0]     y5_imag,
    output signed [23:0]     y6_real,
    output signed [23:0]     y6_imag,
    output signed [23:0]     y7_real,
    output signed [23:0]     y7_imag
    );


    //operating data
    wire signed [23:0]             xm_real [3:0] [7:0];
    wire signed [23:0]             xm_imag [3:0] [7:0];
    wire                           en_connect [15:0] ;
    assign                         en_connect[0] = en;
    assign                         en_connect[1] = en;
    assign                         en_connect[2] = en;
    assign                         en_connect[3] = en;


    //factor, multiplied by 0x2000
    wire signed [15:0]             factor_real [3:0] ;
    wire signed [15:0]             factor_imag [3:0];
    assign factor_real[0]        = 16'h2000; //1
    assign factor_imag[0]        = 16'h0000; //0
    assign factor_real[1]        = 16'h16a0; //sqrt(2)/2
    assign factor_imag[1]        = 16'he95f; //-sqrt(2)/2
    assign factor_real[2]        = 16'h0000; //0
    assign factor_imag[2]        = 16'he000; //-1
    assign factor_real[3]        = 16'he95f; //-sqrt(2)/2
    assign factor_imag[3]        = 16'he95f; //-sqrt(2)/2


    //输入初始化,和码位有关倒置
    assign xm_real[0][0] = x0_real;
    assign xm_real[0][1] = x4_real;
    assign xm_real[0][2] = x2_real;
    assign xm_real[0][3] = x6_real;
    assign xm_real[0][4] = x1_real;
    assign xm_real[0][5] = x5_real;
    assign xm_real[0][6] = x3_real;
    assign xm_real[0][7] = x7_real;
    assign xm_imag[0][0] = x0_imag;
    assign xm_imag[0][1] = x4_imag;
    assign xm_imag[0][2] = x2_imag;
    assign xm_imag[0][3] = x6_imag;
    assign xm_imag[0][4] = x1_imag;
    assign xm_imag[0][5] = x5_imag;
    assign xm_imag[0][6] = x3_imag;
    assign xm_imag[0][7] = x7_imag;


    //butter instantiaiton
    //integer              index[11:0] ;
    genvar               m, k;
    generate
    //3 stage
    for(m=0; m<=2; m=m+1) begin: stage
        for (k=0; k<=3; k=k+1) begin: unit


            butterfly           u_butter(
               .clk        (clk                 ) ,
               .rstn       (rstn                ) ,
               .en         (en_connect[m*4 + k] ) ,
                       //是否再组内?组编号+组内编号:下组编号+新组内编号
               .xp_real    (xm_real[ m ] [k[m:0] < (1< < m) ?
                           (k[3:m] < < (m+1)) + k[m:0] :
                           (k[3:m] < < (m+1)) + (k[m:0]-(1< < m))] ),
               .xp_imag    (xm_imag[ m ] [k[m:0] < (1< < m) ?
                           (k[3:m] < < (m+1)) + k[m:0] :
                           (k[3:m] < < (m+1)) + (k[m:0]-(1< < m))] ),
               .xq_real    (xm_real[ m ] [(k[m:0] < (1< < m) ?
                           (k[3:m] < < (m+1)) + k[m:0] :
                           (k[3:m] < < (m+1)) + (k[m:0]-(1< < m))) + (1<

◆testbench

testbench 编写如下,主要用于 16 路实、复数据的连续输入。因为每次 FFT 只有 8 点数据,所以送入的数据比较随意,并不是正弦波等规则的数据。

`timescale 1ns/100ps
module test ;
    reg          clk;
    reg          rstn;
    reg          en ;


    reg signed   [23:0]   x0_real;
    reg signed   [23:0]   x0_imag;
    reg signed   [23:0]   x1_real;
    reg signed   [23:0]   x1_imag;
    reg signed   [23:0]   x2_real;
    reg signed   [23:0]   x2_imag;
    reg signed   [23:0]   x3_real;
    reg signed   [23:0]   x3_imag;
    reg signed   [23:0]   x4_real;
    reg signed   [23:0]   x4_imag;
    reg signed   [23:0]   x5_real;
    reg signed   [23:0]   x5_imag;
    reg signed   [23:0]   x6_real;
    reg signed   [23:0]   x6_imag;
    reg signed   [23:0]   x7_real;
    reg signed   [23:0]   x7_imag;


    wire                  valid;
    wire signed  [23:0]   y0_real;
    wire signed  [23:0]   y0_imag;
    wire signed  [23:0]   y1_real;
    wire signed  [23:0]   y1_imag;
    wire signed  [23:0]   y2_real;
    wire signed  [23:0]   y2_imag;
    wire signed  [23:0]   y3_real;
    wire signed  [23:0]   y3_imag;
    wire signed  [23:0]   y4_real;
    wire signed  [23:0]   y4_imag;
    wire signed  [23:0]   y5_real;
    wire signed  [23:0]   y5_imag;
    wire signed  [23:0]   y6_real;
    wire signed  [23:0]   y6_imag;
    wire signed  [23:0]   y7_real;
    wire signed  [23:0]   y7_imag;


    initial begin
        clk = 0; //50MHz
        rstn = 0 ;
        #10 rstn = 1;
        forever begin
            #10 clk = ~clk; //50MHz
        end
    end


    fft8 u_fft (
      .clk        (clk    ),
      .rstn       (rstn    ),
      .en         (en     ),
      .x0_real    (x0_real),
      .x0_imag    (x0_imag),
      .x1_real    (x1_real),
      .x1_imag    (x1_imag),
      .x2_real    (x2_real),
      .x2_imag    (x2_imag),
      .x3_real    (x3_real),
      .x3_imag    (x3_imag),
      .x4_real    (x4_real),
      .x4_imag    (x4_imag),
      .x5_real    (x5_real),
      .x5_imag    (x5_imag),
      .x6_real    (x6_real),
      .x6_imag    (x6_imag),
      .x7_real    (x7_real),
      .x7_imag    (x7_imag),


      .valid      (valid),
      .y0_real    (y0_real),
      .y0_imag    (y0_imag),
      .y1_real    (y1_real),
      .y1_imag    (y1_imag),
      .y2_real    (y2_real),
      .y2_imag    (y2_imag),
      .y3_real    (y3_real),
      .y3_imag    (y3_imag),
      .y4_real    (y4_real),
      .y4_imag    (y4_imag),
      .y5_real    (y5_real),
      .y5_imag    (y5_imag),
      .y6_real    (y6_real),
      .y6_imag    (y6_imag),
      .y7_real    (y7_real),
      .y7_imag    (y7_imag));


    //data input
    initial      begin
        en = 0 ;
        x0_real = 24'd10;
        x1_real = 24'd20;
        x2_real = 24'd30;
        x3_real = 24'd40;
        x4_real = 24'd10;
        x5_real = 24'd20;
        x6_real = 24'd30;
        x7_real = 24'd40;


        x0_imag = 24'd0;
        x1_imag = 24'd0;
        x2_imag = 24'd0;
        x3_imag = 24'd0;
        x4_imag = 24'd0;
        x5_imag = 24'd0;
        x6_imag = 24'd0;
        x7_imag = 24'd0;
        @(negedge clk) ;
        en = 1 ;
        forever begin
            @(negedge clk) ;
            x0_real = (x0_real > 22'h3F_ffff) ? 'b0 : x0_real + 1 ;
            x1_real = (x1_real > 22'h3F_ffff) ? 'b0 : x1_real + 1 ;
            x2_real = (x2_real > 22'h3F_ffff) ? 'b0 : x2_real + 31 ;
            x3_real = (x3_real > 22'h3F_ffff) ? 'b0 : x3_real + 1 ;
            x4_real = (x4_real > 22'h3F_ffff) ? 'b0 : x4_real + 23 ;
            x5_real = (x5_real > 22'h3F_ffff) ? 'b0 : x5_real + 1 ;
            x6_real = (x6_real > 22'h3F_ffff) ? 'b0 : x6_real + 6 ;
            x7_real = (x7_real > 22'h3F_ffff) ? 'b0 : x7_real + 1 ;


            x0_imag = (x0_imag > 22'h3F_ffff) ? 'b0 : x0_imag + 2 ;
            x1_imag = (x1_imag > 22'h3F_ffff) ? 'b0 : x1_imag + 5 ;
            x2_imag = (x2_imag > 22'h3F_ffff) ? 'b0 : x2_imag + 3 ;
            x3_imag = (x3_imag > 22'h3F_ffff) ? 'b0 : x3_imag + 6 ;
            x4_imag = (x4_imag > 22'h3F_ffff) ? 'b0 : x4_imag + 4 ;
            x5_imag = (x5_imag > 22'h3F_ffff) ? 'b0 : x5_imag + 8 ;
            x6_imag = (x6_imag > 22'h3F_ffff) ? 'b0 : x6_imag + 11 ;
            x7_imag = (x7_imag > 22'h3F_ffff) ? 'b0 : x7_imag + 7 ;
        end
    end


   //finish simulation
   initial #1000       $finish ;
endmodule

◆仿真结果

大致可以看出,FFT 结果可以流水输出。

图片

用 matlab 自带的 FFT 函数对相同数据进行运算,前 2 组数据 FFT 结果如下。

可以看出,第一次输入的数据信号只有实部有效时,FFT 结果是完全一样的。

但是第二次输入的数据复部也有信号,此时两者之间的结果开始有误差,有时误差还很大。

图片

用 matlab 对 Verilog 实现的 FFT 过程进行模拟,发现此过程的 FFT 结果和 Verilog 实现的 FFT 结果基本一致。

将有误差的两种 FFT 结果取绝对值进行比较,图示如下。

可以看出,FFT 结果的趋势大致相同,但在个别点有肉眼可见的误差。

图片

◆设计总结:

就如设计蝶形单元时所说,旋转因子量化时,位宽的选择就会引入误差。

而且每个蝶形单元的运算结果都会进行截取,也会引入误差。

matlab 计算 FFT 时不用考虑精度问题,以其最高精度对数据进行 FFT 计算。

以上所述,都会导致最后两种 FFT 计算方式结果的差异。

感兴趣的学者,可以将旋转因子和输入数据位宽再进行一定的增加,FFT 点数也可以增加,然后再进行仿真对比,相对误差应该会减小。


附录:matlab 使用

◆生成旋转因子

8 点 FFT 只需要用到 4 个旋转因子。旋转因子扩大倍数为 8192。

clear all;close all;clc;
%=======================================================
% Wnr calcuting
%=======================================================
for r = 0:3 
    Wnr_factor  = cos(pi/4*r) - j*sin(pi/4*r) ;
    Wnr_integer = floor(Wnr_factor * 2^13) ;

    if (real(Wnr_integer)< 0) 
        Wnr_real    = real(Wnr_integer) + 2^16 ; %负数的补码
    else
        Wnr_real    = real(Wnr_integer) ;
    end
    if (imag(Wnr_integer)< 0) 
        Wnr_imag    = imag(Wnr_integer) + 2^16 ; 
    else
        Wnr_imag    = imag(Wnr_integer);
    end

    Wnr(2*r+1,:)  =  dec2hex(Wnr_real)   %实部
    Wnr(2*r+2,:)  =  dec2hex(Wnr_imag)   %虚部
end

◆FFT 结果对比

matlab 模拟 Verilog 实现 FFT 的过程如下,也包括 2 种 FFT 结果的对比。

clear all;close all;clc;
%=======================================================
% 8dots fft
%=======================================================
for r=0:3
    Wnr(r+1)  = cos(pi/4*r) - j*sin(pi/4*r) ;
end
x       = [10, 20, 30, 40, 10, 20 ,30 ,40];
step    = [1+2j, 1+5j, 31+3j, 1+6j, 23+4j, 1+8j, 6+11j, 1+7j];
x2      = x + step;
xm0     = [x2(0+1), x2(4+1), x2(2+1), x2(6+1), x2(1+1), x2(5+1),         x2(3+1), x2(7+1)] ;


%% stage1 
xm1(1) = xm0(1) + xm0(2)*Wnr(1) ;
xm1(2) = xm0(1) - xm0(2)*Wnr(1) ;
xm1(3) = xm0(3) + xm0(4)*Wnr(1) ;
xm1(4) = xm0(3) - xm0(4)*Wnr(1) ;
xm1(5) = xm0(5) + xm0(6)*Wnr(1) ;
xm1(6) = xm0(5) - xm0(6)*Wnr(1) ;
xm1(7) = xm0(7) + xm0(8)*Wnr(1) ;
xm1(8) = xm0(7) - xm0(8)*Wnr(1) ;
floor(xm1(:))


%% stage2
xm2(1) = xm1(1) + xm1(3)*Wnr(1) ;
xm2(3) = xm1(1) - xm1(3)*Wnr(1) ;
xm2(2) = xm1(2) + xm1(4)*Wnr(2) ;
xm2(4) = xm1(2) - xm1(4)*Wnr(2) ;
xm2(5) = xm1(5) + xm1(7)*Wnr(1) ;
xm2(7) = xm1(5) - xm1(7)*Wnr(1) ;
xm2(6) = xm1(6) + xm1(8)*Wnr(2) ;
xm2(8) = xm1(6) - xm1(8)*Wnr(2) ;
floor(xm2(:))


%% stage3
xm3(1) = xm2(1) + xm2(5)*Wnr(1) ;
xm3(5) = xm2(1) - xm2(5)*Wnr(1) ;
xm3(2) = xm2(2) + xm2(6)*Wnr(2) ;
xm3(6) = xm2(2) - xm2(6)*Wnr(2) ;
xm3(3) = xm2(3) + xm2(7)*Wnr(3) ;
xm3(7) = xm2(3) - xm2(7)*Wnr(3) ;
xm3(4) = xm2(4) + xm2(8)*Wnr(4) ;
xm3(8) = xm2(4) - xm2(8)*Wnr(4) ;
floor(xm3(:))


%% fft
fft1 = fft(x)
fft2 = fft(x2)
plot(1:8, abs(fft2))
hold on
plot(1:8, abs(xm3), 'r')
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 正弦波
    +关注

    关注

    11

    文章

    646

    浏览量

    55475
  • FFT
    FFT
    +关注

    关注

    15

    文章

    436

    浏览量

    59428
  • 乘法器
    +关注

    关注

    8

    文章

    205

    浏览量

    37123
  • DFT
    DFT
    +关注

    关注

    2

    文章

    231

    浏览量

    22765
  • MATLAB仿真
    +关注

    关注

    4

    文章

    176

    浏览量

    19946
收藏 人收藏

    评论

    相关推荐

    有关用Verilog编写2048点FFT

    我使用Verilog编写了2048点FFT就是不知道如何
    发表于 08-18 20:37

    STM32设计方案与示例分享

    都是经典项目,建议下载学习STM32设计方案与示例分享 第一波stm32设计方案与示例分享第二波STM32计方案与示例分享 第三波STM32计方案与示例分享 第四波
    发表于 09-03 18:52

    求一种基于FPGA的64点FFT处理器的设计方案

    讨论了一种基于FPGA的64点FFT处理器的设计方案,输入数据的实部和虚部均以16位二进制数表示,采用基2DIT-FFT算法,以Altera公司的QuartusⅡ软件为开发平台对处理器各个的模块进行设计,在Stratix系列中的
    发表于 04-29 06:25

    数字信号处理fftverilog应用程序

    在学习了数字信号处理之后,在底部使用verilog实现了FFT的应用
    发表于 09-28 06:49

    基于FPGA的FFT处理器的研究与设计

    本文利用频域抽取基四算法,运用灵活的硬件描述语言-Verilog HDL 作为设计主体,设计并实现一套集成于FPGA 内部的FFT 处理器。FFT 处理器的硬件试验结果表明该处理器的运算结
    发表于 01-20 14:33 40次下载

    FFT Verilog RTL

    FFT Verilog RTL
    发表于 07-08 15:55 41次下载

    一种块递推实时FFT算法模块设计与实现

    文中提出了一种基于FPGA—IP核的FFT算法硬件模块的设计方案,该方案采用四分块递推FFT算法,具有结构规范、递推性好、实时性强等特点,结合DSP对模块的数据输入和输出的软
    发表于 09-15 16:25 26次下载

    基于FPGA的高速定点FFT算法的设计方案

    基于FPGA的高速定点FFT算法的设计方案 引 言    快速傅里叶变换(FFT)作为计算和分析工具,在众多学科领域(如信号处理、图像处理、生物信息学、计算物理
    发表于 02-09 10:47 1153次阅读
    基于FPGA的高速定点<b class='flag-5'>FFT</b>算法的<b class='flag-5'>设计方案</b>

    嵌入式系统中FFT算法分析及设计方案

    嵌入式系统中FFT算法分析及设计方案 概述: 目前国内有关数字信号处理
    发表于 03-08 11:47 792次阅读
    嵌入式系统中<b class='flag-5'>FFT</b>算法分析及<b class='flag-5'>设计方案</b>

    基于FFT变换的MEMS检波器设计方案

    本设计采用MEMS检波器对信号进行采集,信号经低功耗主控芯片MSP430F247完成A/D转换后存储数据,将其进行FFT变换,得到
    发表于 12-17 09:25 1291次阅读
    基于<b class='flag-5'>FFT</b>变换的MEMS检波器<b class='flag-5'>设计方案</b>

    并网逆变器的设计方案

    并网逆变器的设计方案并网逆变器的设计方案并网逆变器的设计方案
    发表于 01-11 14:04 22次下载

    基于1553B总线的数据传输设计方案

    为了实现井下与地上数据实时、准确的传输,提出了一种基于1553B总线的数据传输设计方案,并完成相应设计,同时完成地上数据的调制方案设计。该电路接口板的硬件部分使用FPCJA芯片完成,采用
    发表于 11-11 17:22 15次下载
    基于1553B总线的数据传输<b class='flag-5'>设计方案</b>

    数字信号处理FFTVerilog工程文件和程序免费下载

    本文档的主要内容详细介绍的是数字信号处理FFTVerilog工程文件和程序免费下载。
    发表于 11-29 17:13 33次下载
    数字信号处理<b class='flag-5'>FFT</b>的<b class='flag-5'>Verilog</b>工程文件和程序免费下载

    Verilog FFT设计

    FFT(Fast Fourier Transform),快速傅立叶变换,是一种 DFT(离散傅里叶变换)的高效算法。在以时频变换分析为基础的数字处理方法中,有着不可替代的作用。
    的头像 发表于 03-27 11:42 1091次阅读
    <b class='flag-5'>Verilog</b> <b class='flag-5'>FFT</b>设计

    基2FFTverilog代码实现及仿真

    上文基2FFT的算法推导及python仿真推导了基2FFT的公式,并通过python做了算法验证,本文使用verilog实现8点基2FFT的代码。
    的头像 发表于 06-02 12:38 1750次阅读
    基2<b class='flag-5'>FFT</b>的<b class='flag-5'>verilog</b>代码实现及仿真