LPUART(Low power universal asynchronous receiver transmitter,低功耗通用异步收发器),相比标准的UART,其功耗极低,支持在低功耗模式下运行,并且可以将MCU从低功耗模式唤醒。
上期介绍了MM32全新低功耗系列MM32L0130的LPUART外设,并实现了基本UART收发通信和使用LPUART唤醒MCU。本期介绍LPUART的高级应用,实现DMA收发实验、使用数据匹配寄存器匹配到指定字符后唤醒MCU。
1 LPUART使用DMA
LPUART可以使用DMA来搬运数据,实现无需CPU参与的快速自动数据传输。硬件发出DMA请求与对应的DMA通道直连,也可以通过软件配置寄存器的方式触发DMA通道请求。LPUART的控制寄存器有对应的DMA使能位,如下图所示:
1.1 DMA中断
DMA的每个通道都有三种中断事件标志:DMA半传输、DMA传输完成和DMA传输出错。各通道单独的中断请求由这3种事件标志逻辑或起来。可以配置寄存器的对应位来使能这些中断:
1.2 LPUART使用DMA的配置步骤
- 根据基本UART配置步骤配置LPUART
- 使能LPUEN的DMAR与DMAT位激活DMA模式
- 使能DMA时钟
- 发送需要配置DMA的源地址(存储器地址)和目的地址(LPUTXD),传输的数据量以及DMA通道
- 配置完发送后,只要TXFIFO为空,就会请求DMA发送
- 接收需要配置DMA的源地址(LPURXD)和目的地址(存储器地址),传输的数据量以及DMA通道
- 配置完接收后,只要RXFIFO有数据,即不为空,就会请求DMA接收
1.3 功能代码实现
下面例程实现了使用DMA发送和接收LPUART数据,发送和接收完成后进入中断,例程在基本UART收发实验的基础上完成。
a.
申请例程所用到的TX和RX缓存、TX和RX完成标志:
uint8_t TX_Buffer[16], RX_Buffer[16];
uint8_t TX_Complete = 0, RX_Complete = 0;
b.
配置NVIC:
NVIC_InitTypeDef NVIC_InitStruct;
NVIC_InitStruct.NVIC_IRQChannel = DMA1_Channel2_3_IRQn;
NVIC_InitStruct.NVIC_IRQChannelPriority = 2;
NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStruct);
c.
配置DMA通道2为LPUART_TX:
void LPUART_DMA_TX_Init(void)
{
DMA_InitTypeDef DMA_InitStruct;
RCC_DMA_ClockCmd(DMA1, ENABLE);
DMA_DeInit(DMA1_Channel2);
DMA_StructInit(&DMA_InitStruct);
//DMA transfer peripheral address
DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)&LPUART1- >LPUTXD;
//DMA transfer memory address
DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)TX_Buffer;
//DMA transfer direction from peripheral to memory
DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralDST;
//DMA cache size
DMA_InitStruct.DMA_BufferSize = 16;
//The peripheral address is forbidden to move backward
DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
//The memory address is shifted backward
DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable;
//Define the peripheral data width to 8 bits
DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStruct.DMA_Mode = DMA_Mode_Normal;
DMA_InitStruct.DMA_Priority = DMA_Priority_Medium;
//M2M mode is disabled
DMA_InitStruct.DMA_M2M = DMA_M2M_Disable;
DMA_InitStruct.DMA_Auto_reload = DMA_Auto_Reload_Disable;
DMA_Init(DMA1_Channel2, &DMA_InitStruct);
DMA_SetChannelMuxSource(DMA1_Channel2, DMA1_MUX_LPUART1_TX);
//Enable LPUART_DMA1_Channel Transfer complete interrupt
DMA_ITConfig(DMA1_Channel2, DMA_IT_TC, ENABLE);
LPUART_TX_DMACmd(LPUART1, ENABLE);
while((LPUART1- >LPUEN & LPUART_LPUEN_DMAT) == 0);
//LPUART_DMA1_Channel enable
DMA_Cmd(DMA1_Channel2, ENABLE);
}
d.
配置DMA通道3为LPUART_RX:
void LPUART_DMA_RX_Init(void)
{
DMA_InitTypeDef DMA_InitStruct;
RCC_DMA_ClockCmd(DMA1, ENABLE);
DMA_DeInit(DMA1_Channel3);
DMA_StructInit(&DMA_InitStruct);
//DMA transfer peripheral address
DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)&LPUART1- >LPURXD;
//DMA transfer memory address
DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)RX_Buffer;
//DMA transfer direction from peripheral to memory
DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralSRC;
//DMA cache size
DMA_InitStruct.DMA_BufferSize = 16;
//The peripheral address is forbidden to move backward
DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
//The memory address is shifted backward
DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable;
//Define the peripheral data width to 8 bits
DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStruct.DMA_Mode = DMA_Mode_Normal;
DMA_InitStruct.DMA_Priority = DMA_Priority_Medium;
//M2M mode is disabled
DMA_InitStruct.DMA_M2M = DMA_M2M_Disable;
DMA_InitStruct.DMA_Auto_reload = DMA_Auto_Reload_Disable;
DMA_Init(DMA1_Channel3, &DMA_InitStruct);
DMA_SetChannelMuxSource(DMA1_Channel3, DMA1_MUX_LPUART1_RX);
//Enable LPUART_DMA1_Channel Transfer complete interrupt
DMA_ITConfig(DMA1_Channel3, DMA_IT_TC, ENABLE);
LPUART_RX_DMACmd(LPUART1, ENABLE);
while((LPUART1- >LPUEN & LPUART_LPUEN_DMAR) == 0);
//LPUART_DMA1_Channel enable
DMA_Cmd(DMA1_Channel3, ENABLE);
}
e.
编写中断服务函数:
void DMA1_Channel2_3_IRQHandler(void)
{
if(DMA_GetITStatus(DMA1_IT_TC2))
{
DMA_ClearITPendingBit(DMA1_IT_TC2);
TX_Complete = 1;
}
if(DMA_GetITStatus(DMA1_IT_TC3))
{
DMA_ClearITPendingBit(DMA1_IT_TC3);
RX_Complete = 1;
}
}
f.
编写实验样例:
void LPUART_RxTx_DMA_Test(void)
{
uint8_t i;
for(i = 0; i < 16; i++)
{
TX_Buffer[i] = i;
}
LPUART_DMA_TX_Init();
LPUART_DMA_RX_Init();
while(1)
{
if(TX_Complete == 1)
{
TX_Complete = 0;
DMA1_Channel3- >CMAR = (uint32_t)RX_Buffer;
DMA1_Channel3- >CNDTR = 16;
DMA_Cmd(DMA1_Channel3, ENABLE);
}
if(RX_Complete == 1)
{
RX_Complete = 0;
memcpy((void *)TX_Buffer, (void *)RX_Buffer, 16);
DMA1_Channel2- >CMAR = (uint32_t)TX_Buffer;
DMA1_Channel2- >CNDTR = 16;
DMA_Cmd(DMA1_Channel2, ENABLE);
}
}
}
g.
在main函数中配置好LPUART和DMA后,调用实验函数LPUART_RxTx_DMA_Test,可以得到如下结果:
2 使用数据匹配寄存器匹配到指定字符后唤醒MCU
为进一步降低系统功耗,MM32L0130系列的LPUART提供了一种接收到指定字符才能唤醒低功耗状态的MCU的功能。用于唤醒的指定字符,由数据匹配寄存器确定:
2.1 接收中断配置寄存器
可以通过LPUART的LPUCON.RXEV寄存器配置唤醒事件为START位、一帧接收完成、一帧数据匹配或者RXD下降沿唤醒。
2.2 功能代码实现
匹配指定字符唤醒MCU功能,需要在上期讲解的LPUART唤醒低功耗模式中的MCU基础上修改中断事件配置、指定唤醒字符,具体代码如下:
a.
配置LPUART接收中断事件为接收数据匹配成功:
LPUART_InitTypeDef init_struct;
init_struct.LPUART_Clock_Source = 0;
init_struct.LPUART_BaudRate = LPUART_Baudrate_9600;
init_struct.LPUART_WordLength = LPUART_WordLength_8b;
init_struct.LPUART_StopBits = LPUART_StopBits_1;
init_struct.LPUART_Parity = LPUART_Parity_No;
init_struct.LPUART_MDU_Value = 0x952;
init_struct.LPUART_NEDET_Source = LPUART_NegativeDectect_Source2;
init_struct.LPUART_RecvEventCfg = LPUART_RecvEvent_RecvData_Mactched;
LPUART_Init(LPUART1, &init_struct);
b.
配置特定的唤醒字符:
LPUART_SetMatchData(LPUART1, ‘5’); //指定字符’5’为唤醒字符
c.
编写中断服务程序,判断接收匹配事件并清除标志:
void LPUART1_IRQHandler()
{
if(LPUART_GetFlagStatus(LPUART1, LPUART_LPUSTA_START))
{
LPUART_ClearFlagStatus(LPUART1, LPUART_LPUSTA_START);
}
if(LPUART_GetFlagStatus(LPUART1, LPUART_LPUSTA_MATCH))
{//判断接收中断匹配事件
LPUART_ClearFlagStatus(LPUART1, LPUART_LPUSTA_MATCH);
}
if(LPUART_GetITStatus(LPUART1, LPUART_LPUIF_RXIF) == SET) {
LPUART_ClearITPendingBit(LPUART1, LPUART_LPUIF_RXIF);
rxDataBuf[cnt] = LPUART_ReceiveData(LPUART1);
if(++cnt >= 10)
cnt_flag = 1;
}
EXTI_ClearITPendingBit(EXTI_Line22);
}
d.
编写试验样例:
void LPUART_Wakeup_Test(void)
{
uint8_t temp, i;
char string1[] = "LPUART wakeup mcu test!\\r\\n";
char string2[] = "mcu stop!\\r\\n";
char string3[] = "mcu wakeup!\\r\\n";
for(i = 0; i < strlen(string1); i++)
{
Output_Byte(LPUART1, string1[i]);
}
DELAY_Ms(20);
for(i = 0; i < strlen(string2); i++)
{
Output_Byte(LPUART1, string2[i]);
}
PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);//休眠
for(i = 0; i < strlen(string3); i++)
{
Output_Byte(LPUART1, string3[i]);
}
while(1)
{
}
}
e.
在main函数配置好LPUART后,调用实验函数LPUART_Wakeup_Test,可以得到如下结果:
-
寄存器
+关注
关注
31文章
5336浏览量
120244 -
异步收发器
+关注
关注
0文章
36浏览量
10847 -
FIFO存储
+关注
关注
0文章
103浏览量
5969 -
串口中断
+关注
关注
0文章
64浏览量
13883 -
MCU芯片
+关注
关注
3文章
250浏览量
11439
发布评论请先 登录
相关推荐
评论