0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Mysql索引为什么使用B+树?

dyquk4xk2p3d 来源:良许Linu 2023-06-08 16:34 次阅读

		

		


		


		

		


		

		

		

		

		

		

在我们的印象中,mysql数据表里无非就是存储一行行的数据。跟个excel似的。

直接遍历这一行行数据,性能就是O(n),比较慢。为了加速查询,使用了B+树来做索引,将查询性能优化到了O(lg(n))

但问题就来了,查询数据性能在 lg(n) 级别的数据结构有很多,比如redis的zset里用到的跳表,也是lg(n),并且实现还贼简单。

那为什么mysql的索引,不使用跳表呢?

我们今天就来聊聊这个话题

B+树的结构

在这里,为了混点字数,我简单总结下B+树的结构。

d631e2a8-05d6-11ee-962d-dac502259ad0.pngB+树查询过程

如上图,一般B+树是由多个页组成的多层级结构,每个页16Kb,对于主键索引来说,最末级的叶子结点放行数据,非叶子结点放的则是索引信息(主键id和页号),用于加速查询。

比方说我们想要查找行数据5。会先从顶层页的record们入手。record里包含了主键id和页号(页地址)。关注黄色的箭头,向左最小id是1,向右最小id是7。那id=5的数据如果存在,那必定在左边箭头。于是顺着的record的页地址就到了6号数据页里,再判断id=5>4,所以肯定在右边的数据页里,于是加载105号数据页。

105号数据页里,虽然有多行数据,但也不是挨个遍历的,数据页内还有个页目录的信息,它可以通过二分查找的方式加速查询行数据,于是找到id=5的数据行,完成查询。

从上面可以看出,B+树利用了空间换时间的方式(构造了一批非叶子结点用于存放索引信息),将查询时间复杂度从O(n)优化为O(lg(n))

跳表的结构

看完B+树,我们再来看下跳表是怎么来的。

同样的,还是为了存储一行行的数据。

我们可以将它们用链表串起来。

d6591fe4-05d6-11ee-962d-dac502259ad0.png单链表

想要查询链表中的其中一个结点,时间复杂度是O(n),这谁顶得住,于是将部分链表结点提出来,再构建出一个新的链表。

d6609a8a-05d6-11ee-962d-dac502259ad0.png两层跳表

这样当我想要查询一个数据的时候,我先查上层的链表,就很容易知道数据落在哪个范围,然后跳到下一个层级里进行查询。这样就把搜索范围一下子缩小了一大半。

比如查询id=10的数据,我们先在上层遍历,依次判断1,6,12,很快就可以判断出10在6到12之间,然后往下一跳,就可以在遍历6,7,8,9,10之后,确定id=10的位置。直接将查询范围从原来的1到10,变成现在的1,6,7,8,9,10,算是砍半了。

d67fc1da-05d6-11ee-962d-dac502259ad0.png两层跳表查找id为10的数据

既然两层链表就直接将查询范围砍半了,那我多加几层,岂不妙哉?

于是跳表就这样变成了多层。

d69d5f10-05d6-11ee-962d-dac502259ad0.png三层跳表

如果还是查询id=10的数据,就只需要查询1,6,9,10就能找到,比两层的时候更快一些。

d6b84af0-05d6-11ee-962d-dac502259ad0.png三层跳表查询id为10的数据

可以看出,跳表也是通过牺牲空间换取时间的方式提升查询性能。时间复杂度都是lg(n)

B+树和跳表的区别

从上面可以看到,B+树和跳表的最下面一层,都包含了所有的数据,且都是顺序的,适合用于范围查询。往上的层级都是构建出来用于提升搜索性能的。这两者实在是太像了。但他们两者在新增和删除数据时,还是有些区别的。下面我们以新增数据为例聊一下。

B+树新增数据会怎么样

B+树本质上是一种多叉平衡二叉树。关键在于"平衡"这两个字,对于多叉树结构来说,它的含义是子树们的高度层级尽量一致(一般最多差一个层级),这样在搜索的时候,不管是到哪个子树分支,搜索次数都差不了太多。

当数据库表不断插入新的数据时,为了维持B+树的平衡,B+树会不断分裂调整数据页。

我们知道B+树分为叶子结点和非叶子结点

当插入一条数据时,叶子结点和它上层的索引结点(非叶子结点)最大容量都是16k,它们都有可能会满。

为了简化问题,我们假设一个数据页只能放三条行数据或索引。

加入一条数据,根据数据页会不会满,分为三种情况。

  • 叶子结点和索引结点都没满。这种情况最简单,直接插入到叶子结点中就好了。

d6c62774-05d6-11ee-962d-dac502259ad0.png叶子和非叶子都未满
  • 叶子结点满了,但索引结点没满。此时需要拆分叶子结点,同时索引结点要增加新的索引信息。

d6dc9d56-05d6-11ee-962d-dac502259ad0.png叶子满了但非叶子未满.drawio
  • 叶子结点满了,且索引结点也满了。叶子和索引结点都要拆分,同时往上还要再加一层索引。

d6f9eb7c-05d6-11ee-962d-dac502259ad0.png叶子和非叶子都满了

从上面可以看到,只有在叶子和索引结点都满了的情况下,B+树才会考虑加入一层新的结点。

要把三层B+树塞满,那大概需要2kw左右的数据。

跳表新增数据

跳表同样也是很多层,新增一个数据时,最底层的链表需要插入数据。

此时,是否需要在上面的几层中加入数据做索引呢?

这个就纯靠随机函数了。

理论上为了达到二分的效果,每一层的结点数需要是下一层结点数的二分之一。

也就是说现在有一个新的数据插入了,它有50%的概率需要在第二层加入索引,有25%的概率需要在第三层加个索引,以此类推,直到最顶层

举个例子,如果跳表中插入数据id=6,且随机函数返回第三层(有25%的概率),那就需要在跳表的最底层到第三层都插入数据。

d717f810-05d6-11ee-962d-dac502259ad0.png跳表插入数据

如果这个随机函数设计成上面这样,当数据量样本足够大的时候,数据的分布就符合我们理想中的"二分"。

跟上面B+树不一样,跳表是否新增层数,纯粹靠随机函数,根本不关心前后上下结点。

好了,基础科普也结束了,我们可以进入正题了。

Mysql的索引为什么使用B+树而不使用跳表?

B+树是多叉树结构,每个结点都是一个16k的数据页,能存放较多索引信息,所以扇出很高三层左右就可以存储2kw左右的数据(知道结论就行,想知道原因可以看之前的文章)。也就是说查询一次数据,如果这些数据页都在磁盘里,那么最多需要查询三次磁盘IO

跳表是链表结构,一条数据一个结点,如果最底层要存放2kw数据,且每次查询都要能达到二分查找的效果,2kw大概在2的24次方左右,所以,跳表大概高度在24层左右。最坏情况下,这24层数据会分散在不同的数据页里,也即是查一次数据会经历24次磁盘IO

因此存放同样量级的数据,B+树的高度比跳表的要少,如果放在mysql数据库上来说,就是磁盘IO次数更少,因此B+树查询更快

而针对写操作,B+树需要拆分合并索引数据页,跳表则独立插入,并根据随机函数确定层数,没有旋转和维持平衡的开销,因此跳表的写入性能会比B+树要好。

其实,mysql的存储引擎是可以换的,以前是myisam,后来才有的innodb,它们底层索引用的都是B+树。也就是说,你完全可以造一个索引为跳表的存储引擎装到mysql里。事实上,facebook造了个rocksDB的存储引擎,里面就用了跳表。直接说结论,它的写入性能确实是比innodb要好,但读性能确实比innodb要差不少。

redis为什么使用跳表而不使用B+树或二叉树呢?

redis支持多种数据结构,里面有个有序集合,也叫ZSET。内部实现就是跳表。那为什么要用跳表而不用B+树等结构呢?

这个几乎每次面试都要被问一下。

虽然已经很熟了,但每次都要装作之前没想过,现场思考一下才知道答案。

真的,很考验演技。

大家知道,redis 是纯纯的内存数据库。

进行读写数据都是操作内存,跟磁盘没啥关系,因此也不存在磁盘IO了,所以层高就不再是跳表的劣势了。

并且前面也提到B+树是有一系列合并拆分操作的,换成红黑树或者其他AVL树的话也是各种旋转,目的也是为了保持树的平衡

而跳表插入数据时,只需要随机一下,就知道自己要不要往上加索引,根本不用考虑前后结点的感受,也就少了旋转平衡的开销

因此,redis选了跳表,而不是B+树。

总结

  • B+树是多叉平衡搜索树,扇出高,只需要3层左右就能存放2kw左右的数据,同样情况下跳表则需要24层左右,假设层高对应磁盘IO,那么B+树的读性能会比跳表要好,因此mysql选了B+树做索引。

  • redis的读写全在内存里进行操作,不涉及磁盘IO,同时跳表实现简单,相比B+树、AVL树、少了旋转树结构的开销,因此redis使用跳表来实现ZSET,而不是树结构。

  • 存储引擎RocksDB内部使用了跳表,对比使用B+树的innodb,虽然写性能更好,但读性能属实差了些。在读多写少的场景下,B+树依旧YYDS。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    6983

    浏览量

    88931
  • MySQL
    +关注

    关注

    1

    文章

    804

    浏览量

    26519
  • 索引
    +关注

    关注

    0

    文章

    59

    浏览量

    10468

原文标题:Mysql索引为什么使用B+树?

文章出处:【微信号:良许Linux,微信公众号:良许Linux】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    mysql索引使用技巧有哪些?

    mysql索引使用技巧
    发表于 05-20 06:09

    MySQL索引使用优化和规范

    MySQL - 索引使用优化和规范
    发表于 06-15 16:01

    MySQL数据库索引的底层是怎么实现的

    ' 。就能查出特定列(姓名列)的特定值(张三)的记录。另外,它是一种数据结构。那么mysql的数据结构,采用的是B+。那么,为啥选B+
    发表于 07-28 15:30

    基于B+的动态数据持有性证明方案

    针对云存储环境下的数据持有性证明( PDP)方案效率较低、不能很好支持全动态更新的问题,设计了一种基于B+的动态数据持有性证明方案。该方案引入双线性对技术和数据版本表,支持用户进行数据块级的细粒度
    发表于 11-30 17:14 0次下载
    基于<b class='flag-5'>B+</b><b class='flag-5'>树</b>的动态数据持有性证明方案

    基于KD和R的多维索引结构

    针对云存储系统大多基于键值对 key,value模型存储数据,多维查询需要对整个数据集进行完全扫描,查询效率较低的问题,提出了一种基于KD和R的多维索引结构(简称KD-R索引)。K
    发表于 01-25 15:13 0次下载
    基于KD<b class='flag-5'>树</b>和R<b class='flag-5'>树</b>的多维<b class='flag-5'>索引</b>结构

    MySQL索引使用原则

    一般来说, MySQL 中的 B-Tree 索引的物理文件大多都是以 Balance Tree 的结构来存储的,也就是所有实际需要的数据都存放于 Tree 的 Leaf Node(叶子节点) ,而且
    的头像 发表于 02-11 15:17 2714次阅读
    <b class='flag-5'>MySQL</b><b class='flag-5'>索引</b>使用原则

    MySQL索引的使用问题

    一、前言 在MySQL中进行SQL优化的时候,经常会在一些情况下,对MySQL能否利用索引有一些迷惑。譬如:1、MySQL 在遇到范围查询条件的时候就停止匹配了,那么到底是哪些范围条件
    的头像 发表于 01-06 16:13 1599次阅读

    关于MySQL ORDER BY的详解

    回答一些常见的问题(下文仅讨论InnoDB存储引擎)。 2 索引扫描排序和文件排序(filesort)简介 我们知道InnoDB存储引擎以B+作为索引的底层实现,
    的头像 发表于 02-08 11:20 2459次阅读
    关于<b class='flag-5'>MySQL</b> ORDER BY的详解

    掌握这几种方法 你的接口查询速度将飞速提升

    很大时,大多慢查询可以用索引解决,大多慢查询也因为索引不合理而产生。 MySQL 索引基于 B+
    的头像 发表于 07-06 14:38 1811次阅读

    B+ 索引MySQL 中的认识

    概述 本质:数据库维护某种数据结构以某种方式引用(指向)数据 索引取舍原则:索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数 B 满足的条件 d为大于1的一个正整数,称为
    的头像 发表于 11-08 11:11 1264次阅读
    对 <b class='flag-5'>B+</b> <b class='flag-5'>树</b>与<b class='flag-5'>索引</b>在 <b class='flag-5'>MySQL</b> 中的认识

    MySQL高级进阶:索引优化

    MySQL官方对于索引的定义:索引是帮助MySQL高效获取数据的数据结构。
    的头像 发表于 06-11 11:13 566次阅读
    <b class='flag-5'>MySQL</b>高级进阶:<b class='flag-5'>索引</b>优化

    MySQL为什么选择B+作为索引结构?

    MySQL中,无论是Innodb还是MyIsam,都使用了B+索引结构(这里不考虑hash等其他索引)。本文将从最普通的二叉查找
    的头像 发表于 07-20 11:28 938次阅读
    <b class='flag-5'>MySQL</b>为什么选择<b class='flag-5'>B+</b><b class='flag-5'>树</b>作为<b class='flag-5'>索引</b>结构?

    MySQL索引的常用知识点

    索引结构:B+ 索引其实是一种数据结构 注意B+MyS
    的头像 发表于 09-30 16:43 452次阅读

    索引是什么意思 优缺点有哪些

    的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B及其变种B+。更通俗的说,索引
    的头像 发表于 10-09 10:19 2901次阅读

    一文了解MySQL索引机制

    的呢?一起静下心来,耐心看完这篇文章吧,干货不啰嗦,相信你一定会有所收获。 一、索引模型 模型也就是数据结构,常见的三种模型分别是哈希表、有序数组和搜索。 了解MySQL的朋友已经知道,现在
    的头像 发表于 07-25 14:05 265次阅读
    一文了解<b class='flag-5'>MySQL</b><b class='flag-5'>索引</b>机制