0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用选择性改善接收机的截止点

星星科技指导员 来源:ADI 作者:ADI 2023-06-08 17:06 次阅读

引言

接收机的二阶和三阶截止点(IP)是表示特定射频电路或系统的两个非常重要的线性指标。通过这两个截止点指标能够预测接收机的交调(IM)特性,而交调特性描述了射频装置对相邻信道或邻近信道的抗干扰性。本文分别介绍了二阶和三阶交调情况下传统接收机截止点级联方程的改进形式。二阶截止点(IP2)和三阶截止点(IP3)级联方程的数学推导过程引入了给接收级之间增加选择性(S)带来的影响,以改善IIP2与IIP3。

注意:文中所有大写字母变量表示dB或dBm单位,小写字母变量表示线性单位。

杂散响应干扰

在与移动基站所推荐的最低性能标准有关的无线规范中,接收机的交调特性在技术上被纳入两个主题:接收机的交调杂散响应衰减和接收机对杂散响应干扰采取的保护。

交调杂散响应衰减是在有两个干扰连续波(CW)存在的情况下接收机接收其指定信道输入调制RF信号的能力。这些干扰信号的频率与有用输入信号的频率不同,因此接收机非线性元件会产生两个干扰信号的n阶混频信号,最终在有用信号的频带内产生第三个信号。接收机防止杂散响应干扰的保护功能用于衡量接收机区分响应指定频率输入信号和响应其他频率干扰信号的能力。

三阶交调产生的干扰

作为接收机前端三阶混频的结果,频率为f1和f2的两个信道外的连续波引入一个三阶交调成分,频率等于(2f1 - f2),它将落入开启信道的信号通带内(图1a)。这一带内三阶交调(IM3)产物降低了输入到接收机解调器的载干比(C/I)。按照斜率为3:1的直线(如图1b),输入IM3产物的电平(IIM3,单位为dBm)可以用下面的等式计算,其中包括接收机的总输入IP3 (IIP3,单位为dBm)和两个信道外CW信号的输入功率(PI,单位为dBm)¹:

IIM3 = 3 × PI - 2 × IIP3 (dBm)(式1)

在这种接收机的结构中,信道外CW干扰带来的IM3产物来自于低噪声放大器(LNA)、第一级混频器、IF放大器、第二级混频器以及IF限幅放大器。所有的IM3产物在解调器的输入端累加,相当于在接收机的输入端出现了一个等效的带内IM3产物(IIM3)。使IF放大器、第二级混频器和IF限幅放大器的IM3分量达到最小可以减小这个成为带内干扰的IM3产物,而这一目标可以通过在第一级混频器后面的IF滤波器(IF滤波器1)中提高对那些信道外干扰的IF选择性(S)实现。注意,滤波器的选择性(S)代表IF滤波器1在阻带内对信道外干扰的衰减,它相对于滤波器通带插入损耗(IL)。所以,IF滤波器阻带内对信道外CW信号的总抑制(R,单位为dB)可以定义为:R = -(IL + S)。IF滤波器的选择性(S)降低了后续接收电路对三阶失真和动态范围的要求,因此,为降低等效的带内IIM3可以对接收机总的IIP3进行优化,以满足接收机基带载干比(C/I)的要求。

改进的三阶输入截止点(IIP3)级联方程

两级变频接收机被分成3个部分:RF模块、IF滤波器1和IF模块。RF模块,也就是模块1,包括在第一个IF滤波器之前的接收RF部分。IF模块,即模块2,包括在第一个IF滤波器之后的接收机IF部分。模块1具有G1的RF增益和等效三阶输入截止点IIP31。模块2具有G2的IF增益和等效三阶输入截止点IIP32。假设在接收机输入端出现的两个信道外CW信号干扰的功率值都等于PI,也就是输入到模块1的两个信道外CW信号的功率值。P2是两个信道外CW信号变换到中频后并进入模块2的功率值。IIM3是两个信道外CW信号产生的相对于接收机输入的总IM3失真功率。IIM31是模块1产生的相对于本模块输入的总IM3失真功率。IIM32是模块2产生的相对于本模块输入的总IM3失真功率。

公式引入了在两个信道外CW信号频率上给接收机各级提高选择性(S)带来的影响。功率单位dBm,增益单位dB。

在下面的推导过程中,模块2的输入IM3失真电压除以前级电压增益后的结果与模块1的输入IM3失真电压进行同相相加,这样作可以得到最坏情况下接收机输入的总IM3失真电压。假设系统特征阻抗为1Ω,我们可以写出下面的等式:

√iim3 = √iim31 + √(iim32/(g1/il)) (伏特)(式2)

其中,取平方根是为了将IM3从功率值变为电压值。其中变量iim3、iim31和iim32取线性功率单位(瓦特或毫瓦)。并且有G1 (dB) = 10 × log10(g1)和IL (dB) = 10 × log10(il)。

等式1进行整理后可以得到下面的等式:

IIP3 = PI + ½(PI - IIM3) (dBm)(式3)

等式3定义了整个接收机的输入IP3,它也可以不用dBm作单位而写成线性功率单位(毫瓦,mW)的形式:

pI/iip3 = √(iim3/pI)(式4)

与在等式3中使用的方法类似,我们也可以分别定义模块1和模块2的IIP31和IIP32:

IIP31 = P1 + ½(P1 - IIM31) (dBm)(式5)

IIP32 = P2 + ½(P2 - IIM32) (dBm)(式6)

已知P1(dBm) = PI和P2(dBm) = PI + (G1 - IL - S),可以从等式5、6得出:

IIP31 = PI + ½(PI - IIM31) (dBm)(式7)

IIP32 = (PI + G1 - IL - S) + ½(PI + G1 - IL - S - IIM32) (dBm)(式8)

与我们在等式3中使用的方法相同,等式7、8可以写成线性功率单位的形式而不是以dBm为单位。于是分别得出等式9和10:

pI/iip31 = √(iim31/pI)(式9)

pI(g1/il)/(iip32 × s3/2) = √iim32/((g1/il)pI)(式10)

其中S(dB) = 10 × log10(s)和IL(dB) = 10 × log10(il)。注意S(dB)与IL(dB)都是正数。

再来看等式2,两边都除以(pI)1/2得到等式11:

√(iim3/pI) = √(iim31/pI) + √(iim32/(g1/il)pI(式11)

根据等式4、9和10,我们将等式11中的各项都用其等效形式代替,消去pI将等式简化后,就得到下面这个改进的IIP3级联方程:

1/iip3 = 1/iip31 + (g1/il)/(iip32 × s3/2)(式12)

从等式12可以看出,使用一个高选择性的IF滤波器(s 》》 1),我们可以将IF模块的输入IP3 (IIP32)对接收机总输入IP3 (IIP3)的影响降至最低,于是接收机的总输入IP3就几乎完全由RF模块的IIP3 (IIP31)所决定。值得注意的是:在分析级联系统时,中频模块输入IP3 (IIP32)应该用一个等效的输入IP3代替,它考虑了在IF模块前引入选择性的效应。这个等效的IIP32可以写作:

IIP3e2 = IIP32 + (3/2) × S (dBm)(式13)

在等式12的基础上可以推出更加通用的、计算由M级电路级联组成的接收机总输入IP3的方程。每一级具有线性增益(gn)、输入IP3 (IIP3n,单位为瓦特)和两个信道外CW信号频率的选择性(sn)。上述因素共同作用,使得带内IM3为(假设iln 《《 sn):

1/iip3 = 1/iip31 + (g1/(iip32 × s13/2) + (g1 × g2)/(iip33 × (s1 × s2)3/2) + 。.. + (g1 × g2 。.. gM-1)/(iip3M × (s1 × s2 。.. sM-1)3/2)(式14)

其中,Sn(dB) = 10 × log10(sn)。注意:当sn取1时,这个方程就简化为经典的M级级联的截止点计算方程。此时,选择性参数Sn取0dB¹。

二阶交调产生的干扰

接收机杂散响应是与信道内RF信号频率不同的信号,然而如果电平值足够高,它们仍然能够在接收机的通带内产生输出干扰。杂散响应的频率之一是在半中频点。这个半中频杂散响应导致了出现在接收机RF前端的二阶交调产物(IM2)。IM2的强度可以通过接收机RF前端的二阶截止点(IP2)预测,其中RF前端的定义包括接收链路第一级混频器及其前面的电路。

对于第一级混频器的高端注入(图4a),接收机输入端的一个CW信号偏离本振频率-fIF/2,通过第一级混频器中(-2.fCW + 2.fLO) IM产物下变频至中频¹,²。对于低端注入,与本振频率偏差+fIF/2的CW信号会被频率为(2.fCW - 2.fLO)的IM产物下变频至中频。按照斜率为2:1 (图4b)的线性关系,利用包括接收机RF前端输入IP2 (IIP2,单位为dBm)和输入半中频CW信号功率值(PI,单位为dBm)的方程可以确定上述输入IM2产物(IIM2,单位为dBm)的功率¹:

IIM2 = 2 × PI - IIP2 (dBm)(式15)

减小第一级混频器的二阶IM分量可以降低由半中频杂散响应产生的带内IM2产物。为了达到这个目的,可以在第一级混频器前面的RF滤波器(RF滤波器1和2)中引入一定量的对信道外干扰的射频选择性(S)。注意,滤波器的选择性(S)指的是RF滤波器阻带对杂散响应频率的衰减,它相对于滤波器在通带内的插入损耗(IL)。RF滤波器的选择性(S)降低了第一级混频器对二阶失真和动态范围的要求。因此,为了降低半中频信号产生的等效带内IIM2产物,可以对接收机总的RF前端IIP2进行优化,以满足接收机基带载干比(C/I)的要求。

改进的二阶输入截止点(IIP2)级联方程

图5中,将两级变频接收机的RF前端分成三个模块:RF滤波器2,模块1 (包括所有在RF滤波器2之前的部分)和模块2 (在RF滤波器2之后并包括第一级混频器的部分)。模块1具有RF增益G1和等效二阶输入截止点IIP21。模块2具有RF增益G2和等效二阶输入截止点IIP22。假设出现在接收机输入的每一个半中频CW信号的功率为PI,也就是输入到模块1的半中频CW信号的功率。P2是输入到模块2的半中频CW信号的功率。IIM2是半中频CW信号产生的相对于接收机输入的总IM2失真功率。IIM21是模块1产生的相对于模块1输入的总IM2失真功率。IIM22是模块2产生的相对于模块2输入的总IM2失真功率。

在下面的推导过程中,模块2的输入IM2失真电压除以前级电压增益后的结果与模块1的输入IM2失真电压进行同相相加,这样作可以得到最坏情况下相对于接收机输入的总IM2失真电压。假设系统特征阻抗为1Ω,我们可以写出下面的等式:

√iim2 = √iim21 + √(iim22/(g1/il)) (伏特)(式16)

其中,取平方根是为了将IIM2从功率值转变为电压值。其中变量iim2、iim21和iim22取线性功率单位(瓦特或毫瓦)。并且有G1 (dB) = 10 × log10(g1)和IL (dB) = 10 × log10(il)。

等式15进行整理后可以变成下面的等式:

IIP2 = PI + (PI - IIM2) (dBm)(式17)

等式17定义了整个接收机的输入IP2,它也可以不用dBm作单位而写成线性功率单位(毫瓦,mW)的形式:

pI/iip2 = iim2/pI(式18)

与等式17中使用的方法类似,我们也可以分别定义模块1和模块2的IIP21和IIP22:

IIP21 = P1 + (P1 - IIM21) (dBm)(式19)

IIP22 = P2 + (P2 - IIM22) (dBm)(式20)

已知P1(dBm) = PI和P2(dBm) = PI + (G1 - IL - S),可以从等式19、20得出:

IIP21 = PI + (PI - IIM21) (dBm)(式21)

IIP22 = (PI + G1 - IL - S) + (PI + G1 - IL - S - IIM22) (dBm)(式22)

与我们在等式17中使用的方法相同,等式21、22可以写成线性功率单位的形式而不是以dBm为单位。于是分别得出等式23和等式24:

pI/iip2I = iim2I/pI(式23)

(pI × (g1/il))/(iip22 × S²) = iim22/(g1/il) × pI)(式24)

其中,S(dB) = 10 × log10(s),IL(dB) = 10 × log10(il)。注意,S(dB)和IL(dB)都是正数。

再来看等式16,两边都除以(pI)1/2,得到等式25:

√(iim2/pI) = √(iim2I/pI) + √(iim22/(g1/il) × pI)(式25)

根据等式18、23和24,我们将等式25中的各项都用其等价的形式代替,消去pI将等式简化后,得到下面这个改进的IIP2级联方程:

√(1/iip2) = √(1/iip2I) + √((g1/il)/(iip22 × s²)(式26)

从等式12可以看出,使用一个高选择性的RF滤波(s 》》 1),可以将第一级混频器模块的输入IP2 (IIP22)对接收机RF前端的总输入IP2 (IIP2)的影响降至最低。值得注意的是:在分析级联系统时,第一级混频器的输入IP2 (IIP22)应该用等效的输入IP2代替,它考虑了在RF滤波器中引入选择性的效应,这个等效的IIP22可以写作:

IIP2e2 = IIP22 + 2 × S (dBm)(式27)

在方程26的基础上,可以推出更加通用的、计算由M级级联组成的接收机RF前端的总输入IP2的公式。每一级具有线性增益(gn)、输入IP2 (iip2n,单位为瓦特)和一个半中频CW信号频率的选择性(sn)。带内IM2产物为(假设iln 《《 sn):

√(1/iip2) = √(1/iip21) + √(g1/(iip22 × s1²)) + √((g1 × g2)/(iip23 × (s1 × s2)²) + 。.. + √((g1 × g2 。.. gM-1)/(iip2M × (s1 × s2 。.. sM-1)²)(式28)

其中,Sn(dB) = 10 × log10(sn)。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 滤波器
    +关注

    关注

    161

    文章

    7847

    浏览量

    178449
  • 解调器
    +关注

    关注

    0

    文章

    286

    浏览量

    25838
  • 接收机
    +关注

    关注

    8

    文章

    1182

    浏览量

    53542
收藏 人收藏

    评论

    相关推荐

    图文详解数字接收机的应用设计

    本文介绍了设计一个数字广播接收机的基础知识。有许多新的数据转换器和无线技术的发展,复杂的接收机设计大大简化。本文试图解释如何计算这种接收机的灵敏度和选择性。它决不是一个详尽的阐述,而是
    发表于 08-08 17:44 1.2w次阅读
    图文详解数字<b class='flag-5'>接收机</b>的应用设计

    短波通信接收机的发展动向

    通信接收机的多信号特性(即有效选择性),但要做到这一是较困难的。至于多信号特性的具体情况在此不再赘述,而本文只谈谈改善通信接收机多信号特性
    发表于 12-19 12:53

    通过选择性控制系统口诀了解选择性控制系统应用

    选择性控制系统是指在正常工况向非正常工况切换时正在工作的自动控制系统从切换到另一个连续控制系统。如图5是压缩的连续型选择性控制系统。图5压缩的连续型
    发表于 04-21 16:40

    怎么选择性改善接收机截止

    接收机的二阶和三阶截止(IP)是表示特定射频电路或系统的两个非常重要的线性指标。通过这两个截止指标能够预测
    发表于 08-20 07:27

    一款调频接收机电路图与原理资料分享

    本文介绍的调频接收机利用超再生调频接收原理,因采用了高增益微型集成电路,故电路简单新颖。接收效果达到一般调频接收机的水平,同时克服了超再生
    发表于 05-24 06:01

    射频(R F)通信接收机的相关介绍

    射频(R F)通信接收机的前端将级联中的多个子系统结合起来,以实现几个目标。 滤波器和匹配网络提供频率选择性以消除干扰信号… 放大器通过增强接收信号和要传输的信号来管理噪声水平。 与振荡器耦合
    发表于 07-26 06:01

    利用外部低噪声放大器( LNA )改善接收机灵敏度

    利用外部低噪声放大器( LNA )改善接收机灵敏度
    发表于 12-31 17:48 45次下载
    <b class='flag-5'>利用</b>外部低噪声放大器( LNA )<b class='flag-5'>改善</b><b class='flag-5'>接收机</b>灵敏度

    广播调频接收机原理方框图

    图为广播调频接收机典型方框图。为了获得较好的接收机灵敏度和选择性,除限幅级、鉴频器及几个附加电路外,其主要方框均与AM超外差接收机相同。调频广播基
    发表于 06-29 11:44 6112次阅读
    广播调频<b class='flag-5'>接收机</b>原理方框图

    卫星接收机

    卫星接收机简介 IRD有模拟卫星接收机和数字卫星接收机两种;模拟卫星接收机主要由高频调谐器、中频放大器、
    发表于 08-17 13:07 7518次阅读

    利用外部LNA改善接收机灵敏度

    利用外部LNA改善接收机灵敏度 摘要:该应用笔记讨论了在遥控门控(RKE)接收机中增加一个低噪声放大器(LNA)对系统指标的影响。系统灵敏度将提高3.77dB,但三阶截点将降
    发表于 10-23 18:09 3019次阅读
    <b class='flag-5'>利用</b>外部LNA<b class='flag-5'>改善</b><b class='flag-5'>接收机</b>灵敏度

    EMI接收机与频谱仪的区别在哪里?EMI测试要选用接收机的目的

     在EMC测试设备选型时,常遇到这样的问题:EMI接收机与频谱仪到底有何不同,为何EMI测试要选用接收机?本文依据CISPR16-1(GB/T6113)和GJB152,对于接收机的测试原理进行剖析,分析
    发表于 05-29 02:38 1.1w次阅读

    调频接收机的工作原理

    本文介绍的调频接收机利用超再生调频接收原理,因采用了高增益微型集成电路,故电路简单新颖。接收效果达到一般调频接收机的水平,同时克服了超再生
    的头像 发表于 09-27 11:54 1.8w次阅读
    调频<b class='flag-5'>接收机</b>的工作原理

    雷达接收机几种不同的设计方案

    雷达接收机的性能影响着整个无线电通信系统的性能,由于现在电子设备的不断增多,电磁环境日益错综复杂,相互干扰十分严重,使得接收机接收到越来越多的干扰信号,所以对接收机
    发表于 08-01 09:46 525次阅读
    雷达<b class='flag-5'>接收机</b>几种不同的设计方案

    频谱仪与接收机的区别?

    ,分析接收机与频谱测试设备的选择提供参考-符合标准的接收机是EMC合格评定测试的唯一选择。文章介绍了接收机与频谱分析仪的差异。
    的头像 发表于 09-21 10:28 947次阅读

    利用外部低噪声放大器(LNA)改善接收机灵敏度

    电子发烧友网站提供《利用外部低噪声放大器(LNA)改善接收机灵敏度.pdf》资料免费下载
    发表于 10-19 10:15 1次下载
    <b class='flag-5'>利用</b>外部低噪声放大器(LNA)<b class='flag-5'>改善</b><b class='flag-5'>接收机</b>灵敏度