0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用水凝胶涂层实现硬质微球在液滴中的超泊松分布装载

微流控 来源:分析人 2023-06-09 10:57 次阅读

在液滴中高效率地封装单个功能化微球对基于液滴的高通量分析具有至关重要的作用,如单细胞基因组学和数字免疫分析。然而,由于微球在液滴中的泊松分布,这些需求一直受到限制。尽管惯性微流控等技术已经被证明对提高微球的装载效率有益,但仍然需要一种不依赖严格的流动条件或复杂的微流控设计的高效率微球装载方法。

近期,上海科技大学刘一凡课题组与合作者一起开发了一种通过对微球进行水凝胶涂层来实现其在微流控通道中的有序、紧密排列及液滴装载的策略,从而将硬质微球的装载效率提高到80%以上。相关研究成果以“Exceeding 80% efficiency of single-beadencapsulation in microdroplets through hydrogel coating-assisted closepackedordering”为题发表在Analytical Chemistry期刊上,并被选作封面文章。

在该项研究中,研究团队通过在硬质微球表面覆盖一层薄水凝胶,制备出了水凝胶包裹硬质微球(HRBs)。这种HRBs具有软凝胶微球的特性(如柔软、光滑和可压缩),因此可以像水凝胶微球一样在微流控通道中有序、紧密排列,并以高效率封装进入液滴,实现液滴中超泊松分布硬质微球装载。

06973416-05eb-11ee-962d-dac502259ad0.png

图1 通过水凝胶涂层辅助排列从而实现液滴中高效率微球装载示意图:传统硬质微球包裹进入液滴时服从泊松分布,导致大量空液滴。HRBs由于其能够在微流控通道中有序、紧密排列进入液滴,从而能够实现微球的高效率超泊松分布装载

研究人员采用喷射微流控(jetting microfluidics)和涡旋乳化(Vortex emulsification)两种方法来制备HRBs,其中喷射微流控制备的HRBs具有更高的均一性,同时喷射能够降低一个液滴中包含两个或更多微球的比例。涡旋乳化制备HRBs的优势在于操作简单、通量高,容易实现大规模生产,但其缺点是会产生较高比例的单液滴中多微球包裹的情况。

06b8e1d8-05eb-11ee-962d-dac502259ad0.png

06d511c8-05eb-11ee-962d-dac502259ad0.png

图2 HRBs的制备与表征:(a)通过喷射微流控和涡旋乳化制备HRBs的示意图;(b)喷射微流控芯片中液滴生成由滴落到喷射的转化;(c)两种方法制备的含微球的液滴和相应的HRBs;(d)喷射微流控制备的含微球的液滴以及相应的HRBs的粒径分布;(e)喷射微流控能够将粘附微球分散开,从而减少液滴中多个微球包裹的概率;(f)两种方法制备的HRBs的双包率统计;(g)两种方法制备HRBs的通量比较

在成功制备好HRBs之后,研究人员将其通入设计好的含有两个十字通道的微流控芯片中测试微球的高效率装载。实验结果表明微球能够在芯片上有序、紧密排列,并以高效率的方式,随液滴生成同步包裹进入液滴中,并能够实现约81%的装载效率。

06f03a2a-05eb-11ee-962d-dac502259ad0.png

图3 HRBs高效率装载进入液滴中:(a)微流控芯片设计模式图;(b)喷射微流控和涡旋乳化两种方法制备的HRBs装载进入液滴后的明场图片,其中黄色为单微球装载液滴,绿色为多微球装载液滴;(c)两种方法制备的HRBs装载进入液滴后的液滴直径统计;(d)两种方法制备的HRBs装载进入液滴的效率比较;(e)喷射微流控制备的HRBs装载进入液滴的情况与泊松分布比较;(f)该工作微球装载效率和一些现有技术进行比较

在验证了HRBs的高效率封装之后,研究人员尝试将HRBs和单细胞共同封装,并进行单细胞转录组测序分析。其中用于制备HRBs的硬质微球为含有特定寡核苷酸序列的Drop-seq3微球。研究结果表明,基于Drop-seq微球制备的HRBs能够与细胞高效率配对,同时测序结果也表明,利用HRBs进行的单细胞转录组测序数据质量与传统Drop-seq微球相当。

070a62b0-05eb-11ee-962d-dac502259ad0.png

图4 水凝胶包裹Drop-seq微球和细胞进行液滴中高效率配对:(a)含有特定寡核苷酸序列的Drop-seq微球制备成HRBs模式图;(b)裸露的Drop-seq微球和对应的制备成的HRBs的明场图及相应直径分布;(c)HRBs和细胞共同包裹进入液滴的示意图;(d)HRBs和细胞共同包裹进入液滴的结果图;(e)HRBs和细胞共同包裹进入液滴后包裹比例统计;(f)该工作的细胞捕获效率和几个代表性的单细胞测序进行比较;(g)裸露的Drop-seq微球和相应的HRBs分别对HEK293T细胞进行单细胞转录组分析统计

综上所述,该研究介绍了一种利用水凝胶涂层辅助的高效率超泊松分布微球装载策略。在实验中,微球的最高装载效率能达到80%,超过了传统泊松分布以及现有的基于惯性微流控超泊松分布的方法。此外,微球和细胞共包裹实验表明使用该策略能够显著增加细胞-微球配对效率,并进行高通量单细胞转录组测序分析。

这项工作得到了国家重点研究与发展计划、国家自然科学基金和上海市科学技术委员会等的支持。中科院上海高等研究院博士研究生陈龙、赵毅博士和上海科技大学博士研究生李婕为共同第一作者,上海科技大学刘一凡教授、上海微系统所宓现强教授和复旦大学张经纬教授为共同通讯作者。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微流控芯片
    +关注

    关注

    13

    文章

    266

    浏览量

    18813
  • 微流控器件
    +关注

    关注

    0

    文章

    33

    浏览量

    3174

原文标题:利用水凝胶涂层实现硬质微球在液滴中的超泊松分布装载

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于介电电泳的选择性萃取流体装置用于单细胞分析

    不同,能够包封生物样品的琼脂糖被成功地捕获捕获袋施加500 V电压的情况下,通过电极之间产生的介电电泳力从袋中选择性地提取目标
    的头像 发表于 11-11 14:10 154次阅读

    Aigtek功率放大器疏水表面非接触式操控研究的应用

    实验名称:功率放大器疏水表面非接触式操控及表面增强拉曼散射高通量测量的应用 实验内容:
    的头像 发表于 11-07 15:24 128次阅读
    Aigtek功率放大器<b class='flag-5'>在</b><b class='flag-5'>超</b>疏水表面非接触式操控<b class='flag-5'>液</b><b class='flag-5'>滴</b>研究<b class='flag-5'>中</b>的应用

    功率放大器机器视觉下操控与荧光分析检测的应用

    实验名称:功率放大器机器视觉辅助下疏水表面无接触操控与荧光分析检测的应用实验内容:
    的头像 发表于 10-29 17:54 610次阅读
    功率放大器<b class='flag-5'>在</b>机器视觉下<b class='flag-5'>液</b><b class='flag-5'>滴</b>操控与荧光分析检测<b class='flag-5'>中</b>的应用

    ATA-7030高压放大器多体系油相交流电场的应用

    实验名称:多体系油相交流电场行为控制实验内容:油-油体系是对常用含水体系的补充研究,适用于许多与水或水性溶液不兼容的应用场合,从药物制备、涂层和复合材料生产、到能量收集和管理等等均有广泛的研究
    的头像 发表于 10-22 15:30 157次阅读
    ATA-7030高压放大器<b class='flag-5'>在</b>多体系油相<b class='flag-5'>液</b><b class='flag-5'>滴</b>交流电场<b class='flag-5'>中</b>的应用

    ATA-1372A宽带功率放大器超声驱动喷嘴制备的应用

    实验名称:超声驱动喷嘴制备系统实验内容:设计了一种集成了高通量制备和定向分配功能的超
    的头像 发表于 10-09 18:52 188次阅读
    ATA-1372A宽带功率放大器<b class='flag-5'>在</b>超声驱动喷嘴<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>制备<b class='flag-5'>中</b>的应用

    高压放大器EHD打印系统设计的应用

    实验名称:EHD打印系统设计与实现测试设备:高压放大器、函数发生器、探头、显微摄像头、计算机等。实验过程:图1:EHD打印系统整体框架图2:系统硬件装置示意图设计系统整体架构如图1所示,图2为
    的头像 发表于 09-19 16:18 715次阅读
    高压放大器<b class='flag-5'>在</b>EHD<b class='flag-5'>微</b><b class='flag-5'>滴</b>打印系统设计<b class='flag-5'>中</b>的应用

    深视智能高速摄像机控流实验的应用

    01项目背景控流技术是一种尺度条件下对少量流体进行精确且系统地控制的技术,其应用领域广泛,包括医药、化工、材料科学等多个行业。控流
    的头像 发表于 09-03 08:06 186次阅读
    深视智能高速摄像机<b class='flag-5'>在</b><b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>微</b>控流实验<b class='flag-5'>中</b>的应用

    流控芯片在生物学有何应用?流控芯片、检测技术介绍

    一、流控芯片相关技术 1、技术 操控包
    的头像 发表于 08-14 14:28 439次阅读

    功率放大器多组分交流电场下可控融合研究的应用

    实验名称:功率放大器多组分交流电场下可控融合研究的应用实验内容:该
    的头像 发表于 08-12 14:14 210次阅读
    功率放大器<b class='flag-5'>在</b>多组分<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>交流电场下可控融合研究<b class='flag-5'>中</b>的应用

    生成方法及发展趋势

    的生成方法 早期使用的生成方法主要有高速搅拌法、逐层组装技术、膜乳化法和界面聚合法等, 均可生成
    的头像 发表于 07-26 13:27 304次阅读

    三相流控系统-界面上的自发转移机制解析

    目前跨界面的转移方法主要分为主动和被动两种。主动方法依赖于外部场(如磁场、声场、光场)来控制的运动,虽然可以实现精确控制,但对流体性
    的头像 发表于 03-31 16:32 1261次阅读
    三相<b class='flag-5'>微</b>流控系统<b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>在</b><b class='flag-5'>液</b>-<b class='flag-5'>液</b>界面上的自发转移机制解析

    一种用于单细胞无标记分析的筛选(LSDS)方法

    基于的单细胞分析是一种非常强大的工具,可用于以单细胞分辨率研究表型和基因组异质性,从而解决各种生物问题。
    的头像 发表于 03-26 11:17 497次阅读
    一种用于<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>中</b>单细胞无标记分析的<b class='flag-5'>液</b><b class='flag-5'>滴</b>筛选(LSDS)方法

    流控技术研究进展综述

    流控作为一项发展了近二十年的先进技术,由于其高通量、高精度、独立反应等优势,已经被广泛应用于分析化学、材料科学以及分子生物学等多个学科领域。
    的头像 发表于 01-23 09:17 1173次阅读
    <b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>微</b>流控技术研究进展综述

    流控柱阵列装置微小的形成原理介绍

    据麦姆斯咨询报道,近期,日本东京工业大学(Tokyo Institute of Technology)的科学家们已经阐明了流控柱阵列(post-array)装置生成的详细物理学
    的头像 发表于 12-11 09:29 956次阅读
    <b class='flag-5'>微</b>流控柱阵列装置<b class='flag-5'>中</b>微小<b class='flag-5'>液</b><b class='flag-5'>滴</b>的形成原理介绍

    基于-固摩擦电纳米发电机的流控芯片,用于参数的无创自动力监测

    本研究提出了一种基于-固摩擦电纳米发电机的监测方法算法,它可以实现
    的头像 发表于 12-05 15:23 807次阅读
    基于<b class='flag-5'>液</b>-固摩擦电纳米发电机的<b class='flag-5'>微</b>流控芯片,用于<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>参数的无创自动力监测