0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

氧化石墨烯+可降解聚合物=新复合材料

深圳市赛姆烯金科技有限公司 来源:materialstoday 2023-06-09 15:50 次阅读

聚乳酸 (PLA) 是一种由可再生生物质制成的聚合物;通常是发酵的植物淀粉,如玉米、甘蔗、木薯或甜菜。在使用中,它表现出与某些石油衍生聚合物相似的机械和物理特性,但它是可生物降解的——在商业堆肥条件下,PLA 将在十二周内分解,而聚对苯二甲酸乙二醇酯 (PET) 则需要几个世纪。

广泛应用于生物医学和纺织行业,近年来它在食品包装领域的受欢迎程度有了巨大的增长。然而,PLA 被视为“临时”解决方案。非常适合节日期间的外卖咖啡杯和食品容器,但由于其阻隔性能差(对水蒸气和氧气的渗透性高),因此根本不适合长期储存食品。为了解决这一限制,来自智利的一个跨学科研究团队开发了一系列 PLA 纳米复合材料,将可生物降解的聚合物与功能化氧化石墨烯 (GO) 相结合。他们的研究成果发表在《Polymer Testing》7月刊上。

他们首先生产氧化石墨烯,然后在两种不同的温度下——25°C(GO-DA1 和 GO-ODA1)和80°C(GO-DA2 和 GO-ODA2)——用两种类型的烷基胺(癸胺 (DA) 和十八胺 (ODA))对其进行功能化。使用熔融混合技术,将这些功能化的 GO 纳米颗粒填料以不同的负载量(0.2、0.7、2 wt%)掺入 PLA 中。制备的复合薄膜厚度为 1.0 毫米(用于机械测试)或 0.1 毫米(用于渗透率分析),并经历了一系列其他表征阶段,包括 FTIR 光谱、热重分析和差示扫描量热法。

77aedf90-065f-11ee-962d-dac502259ad0.png

石墨、GO、GO-ODA1、GO-ODA2、GO-DA1 和 GO-DA2 的 X 射线衍射图。

图片来源:sciencedirect

他们发现温度对氧化石墨烯功能化阶段有显著影响——在 80 °C 下进行的反应显示出比室温下更高的质量产率。元素分析表明,功能化将氮添加到纳米颗粒中,达到 GO-DA2 的最大含量(3.92 wt%)。X 射线衍射和 FTIR 支持这一发现,证实了功能化纳米粒子上存在烷基链。纳米颗粒的热分析发现,虽然氧化石墨烯在 130 到 280 °C 之间表现出显着的质量损失 (38%),但功能化氧化石墨烯的热稳定性要高得多——例如,GO-DA2 的质量损失仅为 12%,GO-ODA2的质量损失仅为7% 。

复合薄膜的量热曲线表明,PLA-GO 的结晶度低于任何 PLA 功能化的 GO 薄膜——这表明功能化促进了复合材料的聚合物与其填料之间更高的亲和力。复合材料的光学显微镜分析证实了这一结果。

研究发现,随着纳米颗粒负载量的增加,PLA 复合材料的机械性能略有下降。他们将此归因于四个因素,“……团聚体的形成、纳米复合材料结晶度的降低、颗粒-聚合物界面裂缝的形成以及改性氧化石墨烯中存在的烷基链的增塑作用。”阻隔测试表明,随着纳米颗粒负载量的增加,复合材料的氧气和水蒸气的渗透性显著降低。

复合材料 PLA-GO-ODA2 表现出最佳的整体阻隔性能——在0.7wt%时,透氧率与标准 PLA 相比降低了30.4%。与单独使用 PLA 相比,仅使用0.2 wt%的GO-ODA2可使水蒸气渗透率降低 50.2%。

“除了其他可能的应用之外,这种阻隔性能的显著改进使这种材料适用于食品包装。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 纳米
    +关注

    关注

    2

    文章

    696

    浏览量

    36976
  • 石墨烯
    +关注

    关注

    54

    文章

    1549

    浏览量

    79557
  • 复合材料
    +关注

    关注

    2

    文章

    228

    浏览量

    13057

原文标题:氧化石墨烯+可降解聚合物=新复合材料

文章出处:【微信号:深圳市赛姆烯金科技有限公司,微信公众号:深圳市赛姆烯金科技有限公司】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    聚合物电池的分类,锂聚合物电池的结构

    有机电解液等材料以提高离子传导性的凝胶聚合物电池。锂聚合物电池的结构 图3示出一种积层型锂聚合物电池的结构。这是将正极(LiCoO2)/凝胶型聚合物
    发表于 05-24 12:19

    2017中国(上海)国际石墨技术与应用展览会

    、超级电容、导电油墨、触摸屏、散热、涂料、传感器、成像技术、场发射材料、能量存储、高频电子、聚合物、海水淡化、催化剂、建筑材料等行业人士;-国内外石墨
    发表于 03-08 09:24

    静电纺丝最新专利20170703

    包裹聚丙烯腈复合纳米纤维膜的纺丝装置申请号CN20161124110.X申请人苏州纳塞博斯新材料科技有限公司摘要 本实用新型公开了一种制备氧化石墨
    发表于 07-05 09:13

    2018中国(上海)国际石墨技术与应用展览会

    、锂电子电池、燃料电池、超级电容、导电油墨、触摸屏、散热、涂料、传感器、成像技术、场发射材料、能量存储、高频电子、聚合物、海水淡化、催化剂、建筑材料等行业人士;-国内外石墨
    发表于 09-01 13:48

    如何制备石墨铝基复合材料

    迄今为止,石墨已经被成功地与无机纳米结构、有机晶体、聚合物、金属有机框架结构、生物材料、碳纳米管等材料
    发表于 12-28 15:57 1.6w次阅读
    如何制备<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>铝基<b class='flag-5'>复合材料</b>

    石墨的片层大小如何影响其复合材料的性能

    ,载流子迁移率可达2×105 cm2·(V·s)-1;并且质量轻,比表面积理论值为2630 m2/g,杨氏模量达1.0 TPa,力学性能可与碳纳米管相媲美。石墨原料易得,且制备工艺与可加工性也在不断改善。根据石墨
    发表于 03-03 13:41 2.8w次阅读

    石墨/聚丙烯复合材料的制备与性能

    溶液共混法(包括胶乳混合法)由于不需要很高的温度,避免了高温混合使石墨团聚的问题,能保证石墨复合材料中较均匀分散(前提是选择适合的溶剂
    的头像 发表于 08-15 09:28 3687次阅读

    聚合物复合材料的微观热传导机制及基本理论

    随着国家将碳基材料纳入“十四五”原材料工业相关发展规划, 以碳纳米管(carbon nanotubes, CNTs)为代表的碳基高导热材料在增强聚合物导热方面得到了广泛的应用, 填充型
    的头像 发表于 08-24 09:35 3471次阅读

    研究具有优异的散热性能的双三维网络结构的石墨复合材料

    通过将氮化硼(BN)、碳化硅(SiC)和氟化石墨等多种电绝缘和导热纳米材料引入聚合物基体中,以提高所制备的聚合物
    的头像 发表于 03-31 11:07 1211次阅读

    石墨增强铜基复合材料制备工艺及性能的研究进展

    作为常用的金属材料,铜因强度较低而应用范围受限,石墨具有优异的综合性能,作为极具潜力的增强体而受到广泛关注。石墨增强铜基
    的头像 发表于 06-14 16:23 6058次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>增强铜基<b class='flag-5'>复合材料</b>制备工艺及性能的研究进展

    氮化硼在聚合物导热复合材料中应用研究综述

    摘要:为了系统地了解氮化硼在填充聚合物导热复合材料中的应用研究现状,介绍了聚合物/氮化硼复合材料的导热机理,综述了氮化硼的粒径、含量、表面改性以及与其他填料杂化
    的头像 发表于 11-17 17:40 4687次阅读
    氮化硼在<b class='flag-5'>聚合物</b>导热<b class='flag-5'>复合材料</b>中应用研究综述

    如何利用氧化石墨改性增加PP?

    氧化石墨(GO) 的结构与石墨烯类似, 具有蜂窝状的结构形貌, 具有很好的强度和柔韧性, 具有一定的导电、导热性能, 与高分子材料形成复合材料
    发表于 07-20 12:44 452次阅读
    如何利用<b class='flag-5'>氧化石墨</b><b class='flag-5'>烯</b>改性增加PP?

    石墨/聚酰亚胺复合材料的制备方法

    方法,其中一种是机械共混法,另一种是原位聚合法;然后概述了改性石墨对聚酰亚胺复合材料的影响;最后对高性能聚酰亚胺/石墨
    发表于 08-08 12:27 1689次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>/聚酰亚胺<b class='flag-5'>复合材料</b>的制备方法

    MXene-石墨复合材料实现自我修复

     如今,自修复石墨和mxene基复合材料因其耐久性的提高和长期应用成本的降低而吸引了研究人员。
    的头像 发表于 08-30 16:43 2058次阅读
    MXene-<b class='flag-5'>石墨</b><b class='flag-5'>烯</b><b class='flag-5'>复合材料</b>实现自我修复

    什么是LTDF石墨?为什么它是复合材料的最佳选择?

    石墨因其广泛的奇妙特性而经常被称为“奇迹材料”。这些特性使石墨超越了其他添加剂材料,从此成为
    的头像 发表于 09-12 10:17 1527次阅读
    什么是LTDF<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>?为什么它是<b class='flag-5'>复合材料</b>的最佳选择?