0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何基于计算机视觉实现道路交通计数

新机器视觉 来源:新机器视觉 2023-06-12 09:43 次阅读

今天,我们将一起探讨如何基于计算机视觉实现道路交通计数。

在本教程中,我们将仅使用Python和OpenCV,并借助背景减除算法非常简单地进行运动检测

我们将从以下四个方面进行介绍:

1. 用于物体检测的背景减法算法主要思想。

2. OpenCV图像过滤器。

3. 利用轮廓检测物体。

4. 建立进一步数据处理的结构。

背景扣除算法

cab6df4a-08b1-11ee-962d-dac502259ad0.png

有许多不同的背景扣除算法,但是它们的主要思想都很简单。

假设有一个房间的视频,在某些帧上没有人和宠物,那么此时的视频基本为静态的,我们将其称为背景(background_layer)。因此要获取在视频上移动的对象,我们只需要:用当前帧减去背景即可。

由于光照变化,人为移动物体,或者始终存在移动的人和宠物,我们将无法获得静态帧。在这种情况下,我们从视频中选出一些图像帧,如果绝大多数图像帧中都具有某个相同的像素点,则此将像素作为background_layer中的一部分。

我们将使用MOG算法进行背景扣除

cacad81a-08b1-11ee-962d-dac502259ad0.png

原始帧

代码如下所示:

import os
import logging
import logging.handlers
import random


import numpy as np
import skvideo.io
import cv2
import matplotlib.pyplot as plt


import utils
# without this some strange errors happen
cv2.ocl.setUseOpenCL(False)
random.seed(123)


# ============================================================================
IMAGE_DIR = "./out"
VIDEO_SOURCE = "input.mp4"
SHAPE = (720, 1280)  # HxW
# ============================================================================


def train_bg_subtractor(inst, cap, num=500):
'''
        BG substractor need process some amount of frames to start giving result
    '''
print ('Training BG Subtractor...')
    i = 0
for frame in cap:
        inst.apply(frame, None, 0.001)
        i += 1
if i >= num:
return cap


def main():
    log = logging.getLogger("main")


# creting MOG bg subtractor with 500 frames in cache
# and shadow detction
    bg_subtractor = cv2.createBackgroundSubtractorMOG2(
        history=500, detectShadows=True)


# Set up image source
# You can use also CV2, for some reason it not working for me
    cap = skvideo.io.vreader(VIDEO_SOURCE)


# skipping 500 frames to train bg subtractor
    train_bg_subtractor(bg_subtractor, cap, num=500)


    frame_number = -1
for frame in cap:
if not frame.any():
            log.error("Frame capture failed, stopping...")
break


        frame_number += 1
        utils.save_frame(frame, "./out/frame_%04d.png" % frame_number)
        fg_mask = bg_subtractor.apply(frame, None, 0.001)
        utils.save_frame(frame, "./out/fg_mask_%04d.png" % frame_number)
# ============================================================================


if __name__ == "__main__":
    log = utils.init_logging()


if not os.path.exists(IMAGE_DIR):
        log.debug("Creating image directory `%s`...", IMAGE_DIR)
        os.makedirs(IMAGE_DIR)


    main()

处理后得到下面的前景图像

cae5a186-08b1-11ee-962d-dac502259ad0.png

去除背景后的前景图像

我们可以看出前景图像上有一些噪音,可以通过标准滤波技术可以将其消除。

滤波

针对我们现在的情况,我们将需要以下滤波函数:Threshold、Erode、Dilate、Opening、Closing。

首先,我们使用“Closing”来移除区域中的间隙,然后使用“Opening”来移除个别独立的像素点,然后使用“Dilate”进行扩张以使对象变粗。代码如下:

def filter_mask(img):
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
    # Fill any small holes
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
    # Remove noise
opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)
    # Dilate to merge adjacent blobs
dilation = cv2.dilate(opening, kernel, iterations=2)
    # threshold
th = dilation[dilation < 240] = 0
return th

处理后的前景如下:

cb054090-08b1-11ee-962d-dac502259ad0.png

利用轮廓进行物体检测

我们将使用cv2.findContours函数对轮廓进行检测。我们在使用的时候可以选择的参数为:

cv2.CV_RETR_EXTERNAL------仅获取外部轮廓。

cv2.CV_CHAIN_APPROX_TC89_L1------使用Teh-Chin链逼近算法(更快)

代码如下:

def get_centroid(x, y, w, h):
x1 = int(w / 2)
y1 = int(h / 2)
cx = x + x1
cy = y + y1
return (cx, cy)


def detect_vehicles(fg_mask, min_contour_width=35, min_contour_height=35):
matches = []
      # finding external contours
im, contours, hierarchy = cv2.findContours(
fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1)
      # filtering by with, height
for (i, contour) in enumerate(contours):
(x, y, w, h) = cv2.boundingRect(contour)
contour_valid = (w >= min_contour_width) and (
h >= min_contour_height)
if not contour_valid:
continue
          # getting center of the bounding box
centroid = get_centroid(x, y, w, h)
matches.append(((x, y, w, h), centroid))
return matches

建立数据处理框架

我们都知道在ML和CV中,没有一个算法可以处理所有问题。即使存在这种算法,我们也不会使用它,因为它很难大规模有效。例如几年前Netflix公司用300万美元的奖金悬赏最佳电影推荐算法。有一个团队完成这个任务,但是他们的推荐算法无法大规模运行,因此其实对公司毫无用处。但是,Netflix公司仍奖励了他们100万美元。

接下来我们来建立解决当前问题的框架,这样可以使数据的处理更加方便

class PipelineRunner(object):
'''
          Very simple pipline.
          Just run passed processors in order with passing context from one to 
          another.
          You can also set log level for processors.
      '''
def __init__(self, pipeline=None, log_level=logging.DEBUG):
self.pipeline = pipeline or []
self.context = {}
self.log = logging.getLogger(self.__class__.__name__)
self.log.setLevel(log_level)
self.log_level = log_level
self.set_log_level()
def set_context(self, data):
self.context = data
def add(self, processor):
if not isinstance(processor, PipelineProcessor):
              raise Exception(
'Processor should be an isinstance of PipelineProcessor.')
          processor.log.setLevel(self.log_level)
self.pipeline.append(processor)


def remove(self, name):
for i, p in enumerate(self.pipeline):
if p.__class__.__name__ == name:
                  del self.pipeline[i]
return True
return False


def set_log_level(self):
for p in self.pipeline:
              p.log.setLevel(self.log_level)


def run(self):
for p in self.pipeline:
self.context = p(self.context) 
self.log.debug("Frame #%d processed.", self.context['frame_number'])
return self.context


class PipelineProcessor(object):
'''
          Base class for processors.
      '''
def __init__(self):
self.log = logging.getLogger(self.__class__.__name__)

首先我们获取一张处理器运行顺序的列表,让每个处理器完成一部分工作,在案顺序完成执行以获得最终结果。

我们首先创建轮廓检测处理器。轮廓检测处理器只需将前面的背景扣除,滤波和轮廓检测部分合并在一起即可,代码如下所示:

class ContourDetection(PipelineProcessor):
'''
          Detecting moving objects.
          Purpose of this processor is to subtrac background, get moving objects
          and detect them with a cv2.findContours method, and then filter off-by
          width and height. 
          bg_subtractor - background subtractor isinstance.
          min_contour_width - min bounding rectangle width.
          min_contour_height - min bounding rectangle height.
          save_image - if True will save detected objects mask to file.
          image_dir - where to save images(must exist).        
      '''


def __init__(self, bg_subtractor, min_contour_width=35, min_contour_height=35, save_image=False, image_dir='images'):
          super(ContourDetection, self).__init__()
          self.bg_subtractor = bg_subtractor
          self.min_contour_width = min_contour_width
          self.min_contour_height = min_contour_height
          self.save_image = save_image
          self.image_dir = image_dir


def filter_mask(self, img, a=None):
'''
              This filters are hand-picked just based on visual tests
          '''
          kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
# Fill any small holes
          closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
# Remove noise
          opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)
# Dilate to merge adjacent blobs
          dilation = cv2.dilate(opening, kernel, iterations=2)
return dilation


def detect_vehicles(self, fg_mask, context):
          matches = []
# finding external contours
          im2, contours, hierarchy = cv2.findContours(
              fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1)
for (i, contour) in enumerate(contours):
              (x, y, w, h) = cv2.boundingRect(contour)
              contour_valid = (w >= self.min_contour_width) and (
                  h >= self.min_contour_height)
if not contour_valid:
continue
              centroid = utils.get_centroid(x, y, w, h)
              matches.append(((x, y, w, h), centroid))
return matches


def __call__(self, context):
          frame = context['frame'].copy()
          frame_number = context['frame_number']
          fg_mask = self.bg_subtractor.apply(frame, None, 0.001)
# just thresholding values
          fg_mask[fg_mask < 240] = 0
          fg_mask = self.filter_mask(fg_mask, frame_number)
if self.save_image:
              utils.save_frame(fg_mask, self.image_dir +
"/mask_%04d.png" % frame_number, flip=False)
          context['objects'] = self.detect_vehicles(fg_mask, context)
          context['fg_mask'] = fg_mask
return contex

现在,让我们创建一个处理器,该处理器将找出不同的帧上检测到的相同对象,创建路径,并对到达出口区域的车辆进行计数。代码如下所示:

'''
        Counting vehicles that entered in exit zone.


        Purpose of this class based on detected object and local cache create
        objects pathes and count that entered in exit zone defined by exit masks.


        exit_masks - list of the exit masks.
        path_size - max number of points in a path.
        max_dst - max distance between two points.
    '''


def __init__(self, exit_masks=[], path_size=10, max_dst=30, x_weight=1.0, y_weight=1.0):
super(VehicleCounter, self).__init__()


self.exit_masks = exit_masks


self.vehicle_count = 0
self.path_size = path_size
self.pathes = []
self.max_dst = max_dst
self.x_weight = x_weight
self.y_weight = y_weight


def check_exit(self, point):
for exit_mask in self.exit_masks:
try:
if exit_mask[point[1]][point[0]] == 255:
return True
except:
return True
return False


def __call__(self, context):
        objects = context['objects']
        context['exit_masks'] = self.exit_masks
        context['pathes'] = self.pathes
        context['vehicle_count'] = self.vehicle_count
if not objects:
return context


        points = np.array(objects)[:, 0:2]
        points = points.tolist()


# add new points if pathes is empty
if not self.pathes:
for match in points:
self.pathes.append([match])


else:
# link new points with old pathes based on minimum distance between
# points
            new_pathes = []


for path in self.pathes:
                _min = 999999
                _match = None
for p in points:
if len(path) == 1:
# distance from last point to current
                        d = utils.distance(p[0], path[-1][0])
else:
# based on 2 prev points predict next point and calculate
# distance from predicted next point to current
                        xn = 2 * path[-1][0][0] - path[-2][0][0]
                        yn = 2 * path[-1][0][1] - path[-2][0][1]
                        d = utils.distance(
                            p[0], (xn, yn),
                            x_weight=self.x_weight,
                            y_weight=self.y_weight
                        )


if d < _min:
                        _min = d
                        _match = p


if _match and _min <= self.max_dst:
                    points.remove(_match)
                    path.append(_match)
                    new_pathes.append(path)


# do not drop path if current frame has no matches
if _match is None:
                    new_pathes.append(path)


self.pathes = new_pathes


# add new pathes
if len(points):
for p in points:
# do not add points that already should be counted
if self.check_exit(p[1]):
                        continue
self.pathes.append([p])


# save only last N points in path
for i, _ in enumerate(self.pathes):
self.pathes[i] = self.pathes[i][self.path_size * -1:]


# count vehicles and drop counted pathes:
        new_pathes = []
for i, path in enumerate(self.pathes):
            d = path[-2:]


if (
# need at list two points to count
                len(d) >= 2 and
# prev point not in exit zone
not self.check_exit(d[0][1]) and
# current point in exit zone
self.check_exit(d[1][1]) and
# path len is bigger then min
self.path_size <= len(path)
            ):
self.vehicle_count += 1
else:
# prevent linking with path that already in exit zone
                add = True
for p in path:
if self.check_exit(p[1]):
                        add = False
break
if add:
                    new_pathes.append(path)


self.pathes = new_pathes


        context['pathes'] = self.pathes
        context['objects'] = objects
        context['vehicle_count'] = self.vehicle_count


self.log.debug('#VEHICLES FOUND: %s' % self.vehicle_count)


return context

上面的代码有点复杂,因此让我们一个部分一个部分的介绍一下。

cb1d7ee4-08b1-11ee-962d-dac502259ad0.jpg

上面的图像中绿色的部分是出口区域。我们在这里对车辆进行计数,只有当车辆移动的长度超过3个点我们才进行计算

我们使用掩码来解决这个问题,因为它比使用矢量算法有效且简单得多。只需使用“二进制和”即可选出车辆区域中点。设置方式如下:

EXIT_PTS = np.array([
      [[732, 720], [732, 590], [1280, 500], [1280, 720]],
      [[0, 400], [645, 400], [645, 0], [0, 0]]
  ])


base = np.zeros(SHAPE + (3,), dtype='uint8')
  exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]    

现在我们将检测到的点链接起来。

对于第一帧图像,我们将所有点均添加为新路径。

接下来,如果len(path)== 1,我们在新检测到的对象中找到与每条路径最后一点距离最近的对象。

如果len(path)> 1,则使用路径中的最后两个点,即在同一条线上预测新点,并找到该点与当前点之间的最小距离。

具有最小距离的点将添加到当前路径的末端并从列表中删除。如果在此之后还剩下一些点,我们会将其添加为新路径。这个过程中我们还会限制路径中的点数。

new_pathes = []
for path in self.pathes:
      _min = 999999
      _match = None
for p in points:
if len(path) == 1:
              # distance from last point to current
              d = utils.distance(p[0], path[-1][0])
else:
              # based on 2 prev points predict next point and calculate
              # distance from predicted next point to current
              xn = 2 * path[-1][0][0] - path[-2][0][0]
              yn = 2 * path[-1][0][1] - path[-2][0][1]
              d = utils.distance(
                  p[0], (xn, yn),
                  x_weight=self.x_weight,
                  y_weight=self.y_weight
              )


if d < _min:
              _min = d
              _match = p


if _match and _min <= self.max_dst:
          points.remove(_match)
          path.append(_match)
          new_pathes.append(path)


      # do not drop path if current frame has no matches
if _match is None:
          new_pathes.append(path)


self.pathes = new_pathes


  # add new pathes
if len(points):
for p in points:
          # do not add points that already should be counted
if self.check_exit(p[1]):
continue
self.pathes.append([p])


  # save only last N points in path
for i, _ in enumerate(self.pathes):
self.pathes[i] = self.pathes[i][self.path_size * -1:]

现在,我们将尝试计算进入出口区域的车辆。为此,我们需获取路径中的最后2个点,并检查len(path)是否应大于限制。

# count vehicles and drop counted pathes:
    new_pathes = []
for i, path in enumerate(self.pathes):
        d = path[-2:]
if (
# need at list two points to count
            len(d) >= 2 and
# prev point not in exit zone
            not self.check_exit(d[0][1]) and
# current point in exit zone
self.check_exit(d[1][1]) and
# path len is bigger then min
self.path_size <= len(path)
        ):
self.vehicle_count += 1
else:
# prevent linking with path that already in exit zone
            add = True
for p in path:
if self.check_exit(p[1]):
                    add = False
break
if add:
                new_pathes.append(path)
self.pathes = new_pathes


    context['pathes'] = self.pathes
    context['objects'] = objects
    context['vehicle_count'] = self.vehicle_count 
self.log.debug('#VEHICLES FOUND: %s' % self.vehicle_count)
return context

最后两个处理器是CSV编写器,用于创建报告CSV文件,以及用于调试和精美图片的可视化。

class CsvWriter(PipelineProcessor):
def __init__(self, path, name, start_time=0, fps=15):
super(CsvWriter, self).__init__()
self.fp = open(os.path.join(path, name), 'w')
self.writer = csv.DictWriter(self.fp, fieldnames=['time', 'vehicles'])
self.writer.writeheader()
self.start_time = start_time
self.fps = fps
self.path = path
self.name = name
self.prev = None
def __call__(self, context):
            frame_number = context['frame_number']
            count = _count = context['vehicle_count']
if self.prev:
                _count = count - self.prev
            time = ((self.start_time + int(frame_number / self.fps)) * 100
                    + int(100.0 / self.fps) * (frame_number % self.fps))
self.writer.writerow({'time': time, 'vehicles': _count})
self.prev = count
return context
class Visualizer(PipelineProcessor):
def __init__(self, save_image=True, image_dir='images'):
super(Visualizer, self).__init__()
self.save_image = save_image
self.image_dir = image_dir
def check_exit(self, point, exit_masks=[]):
for exit_mask in exit_masks:
if exit_mask[point[1]][point[0]] == 255:
return True
return False
def draw_pathes(self, img, pathes):
if not img.any():
return
for i, path in enumerate(pathes):
                path = np.array(path)[:, 1].tolist()
for point in path:
                    cv2.circle(img, point, 2, CAR_COLOURS[0], -1)
                    cv2.polylines(img, [np.int32(path)], False, CAR_COLOURS[0], 1)
return img
def draw_boxes(self, img, pathes, exit_masks=[]):
for (i, match) in enumerate(pathes):
                contour, centroid = match[-1][:2]
if self.check_exit(centroid, exit_masks):
                    continue
                x, y, w, h = contour
                cv2.rectangle(img, (x, y), (x + w - 1, y + h - 1),
                              BOUNDING_BOX_COLOUR, 1)
                cv2.circle(img, centroid, 2, CENTROID_COLOUR, -1)
return img
def draw_ui(self, img, vehicle_count, exit_masks=[]):
# this just add green mask with opacity to the image
for exit_mask in exit_masks:
                _img = np.zeros(img.shape, img.dtype)
                _img[:, :] = EXIT_COLOR
                mask = cv2.bitwise_and(_img, _img, mask=exit_mask)
                cv2.addWeighted(mask, 1, img, 1, 0, img)
# drawing top block with counts
            cv2.rectangle(img, (0, 0), (img.shape[1], 50), (0, 0, 0), cv2.FILLED)
            cv2.putText(img, ("Vehicles passed: {total} ".format(total=vehicle_count)), (30, 30),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 1)
return img
def __call__(self, context):
            frame = context['frame'].copy()
            frame_number = context['frame_number']
            pathes = context['pathes']
            exit_masks = context['exit_masks']
            vehicle_count = context['vehicle_count']
            frame = self.draw_ui(frame, vehicle_count, exit_masks)
            frame = self.draw_pathes(frame, pathes)
            frame = self.draw_boxes(frame, pathes, exit_masks)
            utils.save_frame(frame, self.image_dir +
"/processed_%04d.png" % frame_number)
return context

结论

正如我们看到的那样,它并不像许多人想象的那么难。但是,如果小伙伴运行脚本,小伙伴会发现此解决方案并不理想,存在前景对象存在重叠的问题,并且它也没有按类型对车辆进行分类。但是,当相机有较好位置,例如位于道路正上方时,该算法具有很好的准确性。

责任编辑:彭菁

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 过滤器
    +关注

    关注

    1

    文章

    425

    浏览量

    19506
  • 计算机视觉
    +关注

    关注

    8

    文章

    1694

    浏览量

    45894
  • OpenCV
    +关注

    关注

    29

    文章

    624

    浏览量

    41206

原文标题:使用OpenCV实现道路车辆计数

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是计算机视觉计算机视觉的三种方法

    计算机视觉是指通过为计算机赋予人类视觉这一技术目标,从而赋能装配线检查到驾驶辅助和机器人等应用。计算机缺乏像人类一样凭直觉产生
    的头像 发表于 11-16 16:38 4388次阅读
    什么是<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>?<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的三种方法

    机器视觉计算机视觉的关系简述

    ,以控制相应的行为。因此,可以说,计算机视觉为机器视觉提供图像和景物分析的理论及算法基础,机器视觉计算机
    发表于 05-13 14:57

    基于OpenCV的计算机视觉技术实现

    基于OpenCV的计算机视觉技术实现OpencV是用来实现计算机视觉相关技术的开放源码工作库,是
    发表于 11-23 21:06 0次下载
    基于OpenCV的<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>技术<b class='flag-5'>实现</b>

    基于线性CCD视觉信息的道路交通标志识别系统

    基于线性CCD视觉信息的道路交通标志识别系统,适用于图像识别类。
    发表于 04-28 09:49 6次下载

    计算机视觉与机器视觉区别

     “计算机视觉”,是指用计算机实现人的视觉功能,对客观世界的三维场景的感知、识别和理解。计算机
    的头像 发表于 12-08 09:27 1.2w次阅读

    道路交通发展难点与智慧展望

    随着生产经济的日益发展和提高,道路交通运输系统也得到了质的改善。
    发表于 07-12 10:55 1449次阅读

    计算机视觉技术简介

    由于“计算机视觉”反映了对视觉环境及其上下文的相对理解,因此,一些科学家认为,该领域为人工智能领域铺平了道路。那么什么是计算机
    发表于 07-11 11:24 4402次阅读

    计算机视觉常用算法_计算机视觉有哪些分类

    本文主要介绍了计算机视觉常用算法及计算机视觉的分类。
    的头像 发表于 07-30 17:34 1.4w次阅读

    关于基于英特尔AI计算机视觉的边缘计算设备

    当前,中国正在大力推进包括人工智能、5G和工业物联网在内的新基础设施建设,为智慧城市的发展注入新动能。其中,城市的智能交通是至关重要的组成部分。通过对于人工智能、计算机视觉、云计算和大
    的头像 发表于 09-16 15:12 2481次阅读
    关于基于英特尔AI<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的边缘<b class='flag-5'>计算</b>设备

    计算机视觉的基础概念和现实应用

    本文将介绍计算机视觉的基础概念和现实应用,对任何听说过计算机视觉但不确定它是什么以及如何应用的人,本文是了解计算机
    的头像 发表于 11-08 10:10 1424次阅读

    使用计算机视觉进行电梯乘客计数

    电子发烧友网站提供《使用计算机视觉进行电梯乘客计数.zip》资料免费下载
    发表于 06-12 15:35 0次下载
    使用<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>进行电梯乘客<b class='flag-5'>计数</b>

    机器视觉计算机视觉的区别

    机器视觉计算机视觉的区别 机器视觉计算机视觉是两个相关但不同的概念。虽然许多人使用这两个术语
    的头像 发表于 08-09 16:51 1911次阅读

    计算机视觉属于人工智能吗

    和解释视觉信息,从而实现对图像和视频的自动分析和处理。 计算机视觉的基本概念 2.1 计算机视觉
    的头像 发表于 07-09 09:11 1000次阅读

    计算机视觉和机器视觉区别在哪

    ,旨在实现对图像和视频的自动分析和理解。 机器视觉 机器视觉计算机视觉的一个分支,主要应用于工业自动化领域。它利用
    的头像 发表于 07-09 09:22 372次阅读

    计算机视觉的五大技术

    计算机视觉作为深度学习领域最热门的研究方向之一,其技术涵盖了多个方面,为人工智能的发展开拓了广阔的道路。以下是对计算机视觉五大技术的详细解析
    的头像 发表于 07-10 18:26 1116次阅读