0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

工业多通道数据采集系统中Σ-Δ型ADC的信号调理

星星科技指导员 来源:ADI 作者:ADI 2023-06-12 14:57 次阅读

许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。 如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040K等ADC的高动态范围、同时采样以及多通道优势。 本文介绍了MAX11040K的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。

高速、Σ-Δ架构的优势

图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。 为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入量程的要求,从而保证DAS的性能指标满足不同国家相关标准的要求。

引言

许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。 如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040K等ADC的高动态范围、同时采样以及多通道优势。 本文介绍了MAX11040K的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。

高速、Σ-Δ架构的优势

图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。 为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入量程的要求,从而保证DAS的性能指标满足不同国家相关标准的要求。

wKgZomSGwcmAUOKpAAB5S0JNPB4991.gif

图1. 基于MAX11040K的DAS在电网监控中的应用

从图1可以看到,采用两片MAX11040K ADC可以同时测量交流电的三相及零相的电压和电流。 该ADC基于Σ-Δ架构,利用过采样/平均处理得到较高的分辨率。 每个ADC通道利用其专有的电容开关Σ-Δ调制器进行模/数转换。 该调制器将输入信号转换成低分辨率的数字信号,它的平均值代表输入信号的量化信息,时钟频率为24.576MHz时对应的采样率为3.072Msps。 数据流被送入内部数字滤波器处理,消除高频噪声。 处理完成后可以得到高达24位的分辨率。

MAX11040K为4通道同时采样ADC,其输出数据是处理后的平均值,这些数值不能像逐次逼近(SAR) ADC的输出那样被看作是采样“瞬间”的数值¹,²。

MAX11040K能够为设计人员提供SAR架构所不具备的诸多功能和特性,包括:1ksps采样率下高达117dB的动态范围; 积分非线性和微分非线性(INL、DNL)也远远优于SAR ADC; 独特的采样相位(采样点)调节能够从内部补偿外部电路(驱动器、变压器、输入滤波器等)引入的相位偏移。

另外,MAX11040K集成一个数字低通滤波器,处理每个调制器产生的数据流,得到无噪声、高分辨率的数据输出。 该低通滤波器具有复杂的频率响应函数,具体取决于可编程输出数据率。 输入端的阻/容(RC)滤波器结合MAX11040K的数字低通滤波器,大大降低了MAX11040K输入信号通道抗混叠滤波器的设计难度,甚至可以完全省去抗混叠滤波器。 表1列举了MAX11040K的部分特性,关于MAX11040K数字低通滤波器或表中列出的特性指标的详细信息,请参考器件数据资料

部分 渠道 输入范围(VP_P) 分辨率(位) 速度(KSPS,最大值) SINAD (1KSPS) (dB) 输入阻抗
MAX11040K 4 ±2.2 24 64 117 高,(约130kΩ)

电力线应用对ADC性能的要求

电力线监控应用中,CT (电流)互感器和PT (电压)互感器输出范围的典型值为:±10V或±5V峰峰值(VP-P)。 而MAX11040K的输入量程为±2.2VP-P,低于CT和PT互感器的典型输出。 不过,可以利用一个简单的低成本方案将±5V或±10V互感器输出调整到MAX11040K较低的输入量程以内,电路如图2所示。

连接到通道1的电路代表一个单端设计,这种配置下,变压器的一端接地,通过一个简单的电阻分压器和电容完成信号调理。

对于共模噪声(该噪声在ADC的两个输入端具有相同幅度)比较严重的应用场合,推荐采用图中通道4所示差分连接电路。 利用MAX11040K的真差分输入大大降低共模噪声的影响。

wKgaomSGwcuAC4tEAABIwbvGL_I563.gif

图2. MAX11040K在电力线监控典型应用中的原理框图,图中给出了一个±10V或±5V输出的变压器接口。 通道4接口电路采用差分设计,通道1采用单端设计。

PT和CT测量变压器相当于低阻互感器(等效阻抗RTR通常在10Ω至100Ω量级)。 为方便计算,以下示例中假设:变压器相当于一个有效输出电阻RTR = 50Ω的电压源; 为便于演示,变压器可以由一个50Ω输出阻抗的低失真函数发生器代替,如图3所示。 MAX11040K的输入阻抗与时钟速率、ADC输入电容有关。 连接适当的旁路电容C3,设定XIN时钟频率 = 24.576MHz,则得到输入阻抗RIN等于130kΩ ±15%,误差取决于内部输入电容的波动。

R1、R2组成的电阻分压网络将±10V或±5V输入信号转换成ADC要求的±2.2V满量程范围(FSR)。 为确保该电路工作正常,需要优化R1和R2电阻值,以及C1、C2和C3电容的选择,以满足±10V或±5V输入的要求。 电阻R1和R2必须有足够高的阻抗,避免CT和PT变压器输出过载。 同时,R2阻值还要足够小,以避免影响ADC的输入阻抗(R2 << R在)。

对于单端设计,图2中MAX11040K通道1的输入电压VIN(f),可以利用式1计算:

wKgZomSGwcyAK_e2AAAG5os-bJQ097.gif

式中:

VTR是CT和PT变压器的输出电压。

RTR是变压器的等效阻抗。

R1、R2构成电阻分压网络。

RIN是MAX11040K的输入阻抗。

R2llRIN是R2和RIN的并联阻抗。

C3为输入旁路电容。

f是输入信号频率。

VIN(f)是MAX11040K的输入电压。

可以利用类似方法进行差分输入设计。

为保持高精度电阻分压比和正确的旁路特性,应选取低温度系数、精度为1%甚至更好的金属薄膜电阻。 电容应选取高精度陶瓷电容或薄膜电容。 最好选择信誉较好的供应商购买这些元件,例如Panasonic、Rohm、Vishay、Kemet和AVX®等。®®®®

MAX11040EVKIT提供了一个全功能、8通道DAS系统,评估板能够帮助设计人员加快产品的开发进程,例如,验证图2中所推荐的原理图方案。

wKgaomSGwc2AKhfbAAA6dHvcnls592.gif

图3. 基于MAX11040EVKIT的开发系统框图,需要两个精密仪表对测量通道进行适当校准。 测量结果可以通过USB发送到PC机,然后转换成Excel®文件作进一步处理。

函数发生器产生的±5V信号连接到MAX11040K的通道2,而另一函数发生器产生的±10V信号连接到MAX11040K的输入通道1。 电阻分压网络R1/R2和R3/R4对±5V或±10V输入进行相应的调整,使其接近ADC的满量程范围(FSR = ±2.2VP-P)。

电阻分压网络R1和R2的取值以及旁路电容C1和C2的取值如表2所示,均由式1计算得到,接近最佳的输入动态范围(约±2.10VP-P)。 该动态范围限制在0.05%相当高的精度范围,非常适合MAX11040K。 有关精度指标的详细信息,请参考MAX11040K数据资料。

VTR ±VP-P RTR (Ω) R1 (Ω) R2 (Ω) RIN (Ω) C3 (µF) f (Hz) VIN ±VP-P VADC (VRMS) Calibration Factor-KCAL Calibration Factor Error (%)
Calculations for nominal VTR and standard components (nominal) values
10 50 3320 909 130000 0.1 50 2.11268 1.4939 3.73301 0.07
-80 68.32 67.92 67.52 67.12 66.72 66.31 65.91 65.51 65.1 64.7
5 50 2490 1820 130000 0.1/td> 50 2.07026 1.46395 2.41516 0.99
Measured values for VTR, VIN, VINRMS with real components values and tolerances used in the experiment
9.863 50 ± 10% 3320 ± 1% 909 ± 1% 130000 ± 15% 0.1 ± 10% 50 2.09872 1.483899 4.699912 0
0 50 ± 10% 2490 ± 1% 1820 ± 1% 130000 ± 15% 0.1 ± 10% 50 0 0.00048 NA NA

表2列出的计算值均来自式1的计算结果和图3定义的精确测量。 表格顶部给出了式1在标称输入电压下的理论计算结果,选择标准的分立元件。 表2底部给出了演示系统中实际测量的元件值以及测试误差,同时还给出了用于FSR校准和计算得到的K卡尔系数,计算公式如下:

校准系数K卡尔按照式2计算:

KCAL = VTRMAX/(VADCMAX - VADC0) (式2)

式中:

VTRMAX是输入最大值,分别代表±5V或±10V输入信号。

VADCMAX是测量、处理后的ADC值,MAX11040EVKIT设置与图3相同,输入信号设置为VTRMAX。

VADC0是测量、处理后的ADC值,MAX11040EVKIT设置与图3相同,输入信号设置为VIN = 0 (系统零失调测量)。

KCAL (本实验中)是针对特别通道的校准系数,根据VADC计算输入信号VTR。

KCAL误差计算显示只基于标称值的KCAL“理论值”可能与基于实际测量值计算的K卡尔之间存在1%左右的误差。

所以,只是依靠理论计算还不足以支持实际要求; 如果设计中需要达到EU IEC 62053标准要求的0.2%精度,就必须对每个测量通道进行满量程(FSR)校准。

表3所示结果验证了½ FSR输入信号的测量。 利用高精度HP3458A万用表测量数据,利用式2中的校准系数K卡尔得到ADC测量值和计算值。

Generator Generator MAX11040K Calculation VERR Requirements
Nominal Signal (1/2 FSR) VTR_M - signal measured by HP3458A VIN Measured by ADC VTR_C = VIN × KCAL (VTR_M - VTR_C) × (100/VTR_C) IEC 62053
(VP-P) (VRMS) (VRMS) (VRMS) (%) (%)
Channel 1: ±5.000 3.4892 0.74259 3.490126 -0.026544 0.2
Channel 2: ±2.500 1.7471 0.7307 1.747384 -0.016265 0.2

表3中的VTR_M表示输入½ FSR信号时的测量值,而VTR_C表示基于MAX11040K测量值和KCAL处理、计算得到的数值。

结果显示调理后的电路测量误差VERR低于0.03%,可轻松满足EU IEC 62053规范要求的0.2%精度指标。

wKgZomSGwc6AFrDPAAFd0H4ppmI464.gif

图4. MAX11040EVKIT GUI允许用户方便地设置各种测量条件:12.8ksps、256采样点/周期和1024次转换。 此外,GUI的计算部分提供了一个进行快速工程运算的便捷工具。

测量结果也可以通过USB口传送到PC端,从而利用强大的(而且免费)的Excel进行详细的数据分析。

结论

MAX11040K等高性能多通道同时采样、Σ-Δ ADC非常适合工业应用的数据采集系统。 这些新型ADC设计能够提供高达117dB的动态范围,有效改善积分非线性和微分非线性,采样速率高达64ksps。 选择适当的信号调理电路,MAX11040K能够满足甚至优于高级“智能”电网监控系统的指标要求¹。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 滤波器
    +关注

    关注

    160

    文章

    7725

    浏览量

    177630
  • adc
    adc
    +关注

    关注

    98

    文章

    6429

    浏览量

    544039
  • 互感器
    +关注

    关注

    12

    文章

    766

    浏览量

    38577
收藏 人收藏

    评论

    相关推荐

    基于CVI的通道数据采集系统

    基于计算机技术及虚拟仪器平台LabWindows/CVI 开发了通道实时数据采集系统系统采用ACL-8112PG
    发表于 12-31 15:10 79次下载

    高性能、通道、同时采样ADC数据采集系统(DAS)的设

    高性能、通道、同时采样ADC数据采集系统(DAS)的设计摘要:本文将帮助设计人员实现高性能
    发表于 06-23 21:12 4213次阅读
    高性能、<b class='flag-5'>多</b><b class='flag-5'>通道</b>、同时采样<b class='flag-5'>ADC</b>在<b class='flag-5'>数据采集</b><b class='flag-5'>系统</b>(DAS)<b class='flag-5'>中</b>的设

    利用Σ-Δ ADC工业通道数据采集系统中进行信号调理

    利用Σ-Δ ADC工业通道数据采集系统中进行信号
    发表于 11-05 21:45 905次阅读
    利用Σ-Δ <b class='flag-5'>ADC</b>在<b class='flag-5'>工业</b><b class='flag-5'>多</b><b class='flag-5'>通道</b><b class='flag-5'>数据采集</b><b class='flag-5'>系统</b>中进行<b class='flag-5'>信号</b><b class='flag-5'>调理</b>

    数据采集信号调理课程

    通过使用LabVIEW软件、内插式DAQ电路板和SCXI信号调理硬件,数据采集信号调理课程将教会学员们基于PC机的
    发表于 04-04 13:08 73次下载

    基于FPGA的通道数据采集系统设计

    基于FPGA的通道数据采集系统设计,下来看看。
    发表于 05-10 13:45 60次下载

    CN0345: 集成PGIA、用于工业信号的低功耗、通道数据采集系统

    CN0345: 集成PGIA、用于工业信号的低功耗、通道数据采集系统
    发表于 03-20 13:27 9次下载
    CN0345: 集成PGIA、用于<b class='flag-5'>工业</b>级<b class='flag-5'>信号</b>的低功耗、<b class='flag-5'>多</b><b class='flag-5'>通道</b><b class='flag-5'>数据采集</b><b class='flag-5'>系统</b>

    信号调理通道信号采集技术的应用综述

    信号调理通道信号采集技术的应用综述
    发表于 08-27 10:34 34次下载

    通道数据采集系统的优缺点

    通道数据采集系统是一种广泛应用于工业、科研、医疗等领域的技术,它能够同时采集多个
    的头像 发表于 07-01 15:58 1246次阅读

    通道数据采集系统的工作原理包括什么

    通道数据采集系统是一种用于从多个传感器或信号源同时获取数据的电子
    的头像 发表于 07-01 16:01 1005次阅读

    通道数据采集系统的转换误差怎么算

    通道数据采集系统是一种广泛应用于工业、科研、医疗等领域的高精度数据采集设备。它通过多个
    的头像 发表于 07-01 16:36 589次阅读

    通道数据采集系统有哪些典型的配置方案?各有和特点?

    通道数据采集系统是一种广泛应用于工业、科研、医疗等领域的数据采集设备。它通过多个
    的头像 发表于 07-01 16:38 1195次阅读

    通道数据采集串扰问题怎么解决

    通道数据采集系统在现代工业、科研和医疗等领域中有着广泛的应用。然而,在
    的头像 发表于 07-02 08:58 980次阅读

    通道数据采集系统的设计的意义

    通道数据采集系统(Multi-channel Data Acquisition System, 简称MDAS)是一种能够同时采集、处理和存
    的头像 发表于 07-02 09:00 699次阅读

    通道数据采集器的特点和功能有哪些

    通道数据采集器是一种广泛应用于工业自动化、科研实验、环境监测等领域的设备,它具有多个通道,可以同时采集
    的头像 发表于 07-02 09:05 724次阅读

    通道数据采集仪怎么用的

    通道数据采集仪是一种广泛应用于工业、科研、教育等领域的高精度数据采集设备。它能够同时采集多个
    的头像 发表于 07-02 09:08 513次阅读