0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

拓扑材料周期表

中科院半导体所 来源:中国物理学会期刊网 2023-06-12 15:51 次阅读

人们曾经认为,外部导电但内部绝缘的材料是不常见的。然而,德国德累斯顿马克斯·普朗克固体化学物理研究所的计算化学家Maia Vergniory及其同事最近证明了事实并非如此。他们发现了数以万计的此类拓扑绝缘体以及其他具有值得关注的拓扑特性的材料,并将这些结果创建成拓扑材料数据库 (www.topologicalquantumchemistry.com)。Vergniory 对 Margaret Harris 讲述了她所在的团队如何进行这种搜索以及数据库对其领域的意义。

拓扑材料目录。由Maia Vergniory及其同事创建的拓扑材料数据库是一种可搜索的网站工具,包含9万多种已知拓扑材料 (译者注:判别的已知拓扑材料为9千多种)

Q:什么是拓扑材料?

拓扑材料中最有趣的是拓扑绝缘体,它们的内部绝缘但表面导电。这类材料中的电子导电通道非常稳定,对实验中可能遇到的一些外部干扰不敏感,例如弱无序或温度波动,也不依赖于材料的尺寸。以上特性很有趣,因为这意味着这类材料具有恒定的电阻和电导率。可对电流进行如此严格的控制对于许多应用都很有用。

Q:能否举些拓扑绝缘体的例子?

最著名的例子可能是砷化镓,它是一种二维半导体,常用于整数量子霍尔效应的实验中。在新一代拓扑绝缘体中,最著名的是硒化铋,但并未引起像砷化镓那样的广泛关注。(译者注:整数量子霍尔效应中用到的是GaAs和AlGaAs生长成的异质结,用该量子阱去限制电子成为二维电子气。)

Q:为什么您和同事决定寻找新的拓扑材料?

当时人们所知的拓扑材料很少,于是我们想到,“如果能开发一种可以快速计算或判别拓扑的方法,我们就可以得知是否存在具有更优性质的拓扑材料”。

例如电子能带的带隙便是一种优化属性。由于拓扑绝缘体的体内是绝缘的,因此其体内有一个“禁止”的能量范围,在这个区域内的电子无法传输;然而该能量范围的电子可以存在于材料的表面,在表面形成导电通道。材料的电子带隙越大,它就越是一个好的拓扑绝缘体。

Q:您是如何着手寻找新的拓扑材料的?

我们开发了一种基于材料晶体对称性的算法,这是以前没有考虑到的。在计算拓扑性质时,晶体的对称性非常重要,因为某些拓扑材料和某些拓扑相需要特定的对称性(或缺乏对称性)才能存在。

例如,整数量子霍尔效应不需要任何晶体对称性的保护,但它确实需要打破一种对称性,即时间反演对称性。这意味着材料需要具有磁性,或者对材料施加非常大的外部磁场。

但其他拓扑相确实需要对称性的保护,我们也设法确定了它们所需要的对称性。然后,一旦我们确定了所有的拓扑相和它们对应的对称性,就可以对它们进行拓扑分类——因为这就是物理学家所做的事情,即对物态进行分类。

我们从2017年开始研究理论表述,并在两年后发表了第一篇与该理论表述相关的论文。但直到现在,我们才最终完成了所有的工作并将结果发表出来。

Q:这项工作中的合作者有谁,每个人的贡献如何?

我设计(并部分执行)了第一性原理计算,其中考虑了如何计算真实材料并“判别”它们是否具有拓扑特性。为此,我们使用了最先进的代码和自主开发的代码来判别材料中电子性质以及对材料的拓扑性质进行分类。

对拓扑材料的理论分析和数据分析是由Benjamin Wieder和Luis Elcoro完成的,因为他们是更硬核的理论物理学家,对拓扑态进行了分析和分类。另一个非常重要的贡献者和该项目的领导者是Nicolas Regnault,我们一起建立和设计了拓扑材料数据库网站。

另外,我们还得到了Stuart Parkin和Claudia Felser的帮助。他们是材料专家,因此他们可以就材料是否合适向我们提供建议。然后是这个工作的协调者Andrei Bernevig,此前我们已经合作多年了。

Q:你们发现了什么?

我们发现有很多材料具有拓扑性质——多到数以万计。我们对这个数字感到惊讶。

Q:考虑到拓扑材料存在的普遍性,您为何会对这个结果感到惊讶呢?为什么以前没有人注意到有如此多的拓扑材料呢?

我不知道为什么研究者们之前错过了如此多的拓扑材料和拓扑性质,这里不仅仅是我们材料科学和凝聚态物理领域的研究者们。量子力学已经存在了一个世纪,这些拓扑性质很微妙,但并不复杂。然而,所有聪明的量子力学“前辈”都完全错过了这个理论表述。

Q:有没有人试过合成这些材料并检查它们是否确实表现为拓扑绝缘体?

有一些,但并不是所有的都被验证过,因为数量太多了。在这项工作之后,实验上又合成了一些新型拓扑材料,例如高阶拓扑绝缘体Bi4Br4。

Q:您和同事构建的拓扑材料数据库被描述为“拓扑材料周期表”。是什么性质决定了它的结构?

拓扑性质与电子电流有关,是材料的全局性质。此前物理学家没有考虑电子拓扑性质的原因之一,可能是因为他们非常关注局部属性,而不是全局属性。所以从这个意义上说,拓扑重要的属性与电荷在实空间的位置以及其定义方式有关。(译者注:电子电流指拓扑材料的边界/表面态,在实空间对应导电通道。)

我们发现,如果知道材料的晶体对称性,就可以预测电荷的行为或流动方式。这也是我们如何对拓扑相进行分类的。

Q:拓扑材料数据库如何工作?研究人员在使用它时会做什么?

首先,他们输入材料的化学式。例如,如果您对食盐感兴趣,它的化学式为NaCl。因此,您将Na和Cl输入搜索栏,之后便可得知该材料所有的性质。使用起来非常简单。

Q:您是说普通食盐是一种拓扑材料吗?这太神奇了。除了熟悉材料的拓扑特性让人们感到惊讶之外,您希望此数据库对这个领域产生什么影响?

我希望它能帮助实验学家弄清楚他们应该生长哪些材料。现在我们已经分析了材料的全部特性,实验学家可以说,“好吧,这个材料所处的电子输运态不好,但是如果我对它进行电子掺杂,那么我们将可以获得一个非常有趣的输运态”。因此,从某种意义上说,我们希望它能帮助实验者找到好的材料。

Q:由于可能与量子计算有关,最近拓扑材料引起了很多关注。这是你工作的一大动力吗?

这是相关的,但每个领域都有不同的分支,我想说我们的工作处在一个不同的分支中。当然,你需要一个拓扑材料作为平台,随后才能使用任何可能的比特(量子比特)来开发拓扑量子计算机,所以我们所做的对此很重要。但是开发拓扑量子计算机将需要在材料设计方面做更多的工作,因为材料的尺寸起着重要作用。我们目前研究的是三维材料,对于量子计算的平台来说,可能需要关注二维系统。

不过,我们的工作还有其他应用。例如,您可以使用该数据库查找太阳能电池的材料,或用于催化、探测器或低耗散电子设备的材料。除了异常奇特的应用之外,日常应用方面的可能性也非常重要。但我们做这项工作的真正动机是理解能带拓扑中的物理。

Q:您和合作者的下一步研究计划是什么?

我想研究有机材料。当前数据库的重点是无机材料,因为我们以无机晶体结构数据库为起点,但有机材料也很有趣。我还想研究更多的磁性材料,因为数据库中报告的磁性材料比非磁性材料少。最后,我还想看看具有手性对称性的材料——也就是说,它们的结构有“左手手性”和“右手手性”两种。

Q:您认为在有机材料或磁性材料中还会有数千种拓扑材料吗?

我不知道。这取决于电子能带中带隙的大小。让我们拭目以待!

(译者注:Maia Vergniory在采访中介绍了近年来参与的与拓扑材料的计算和预言有关的重要工作,即拓扑材料的计算数据库,相关论文分别于2019年和2022年发表于Nature和Science。事实上,在2017年,业内人士就已经意识到,能带中拓扑性质的全自动、快速判别是可能的。中科院物理所团队与美国哈佛大学团队在2017年底独立发布了“拓扑词典”,即非磁性晶体材料中对称性质到拓扑性质的完整映射。根据“拓扑词典”,中科院物理所团队于2018年7月上线了国际首个拓扑材料计算数据库Materiae (与被采访者的Topological Materials Database同日上线)。之后,我国南京大学团队也上线了自己的拓扑材料计算数据库Topological Materials Arsenal。中科院物理所团队、南京大学团队与受访者团队,于2019年2月在Nature上同期独立发表了相关论文。)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 拓扑
    +关注

    关注

    4

    文章

    337

    浏览量

    29539
  • 材料
    +关注

    关注

    3

    文章

    1168

    浏览量

    27189
  • 数据库
    +关注

    关注

    7

    文章

    3750

    浏览量

    64207

原文标题:拓扑材料周期表

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    CPU时钟周期、机器周期和指令周期的关系

    CPU时钟周期、机器周期和指令周期是计算机体系结构中三个紧密相连且至关重要的概念,它们共同构成了CPU执行指令和处理数据的基本时间框架。以下是对这三个周期之间关系的详细解析。
    的头像 发表于 09-26 15:38 1076次阅读

    叉指电极上覆盖敏感材料的阻值计算

    覆盖的敏感材料厚度超出叉指厚度时计算电阻,是否可以视作叉指电极指间电阻多个周期串联后与超出叉指厚度部分敏感材料电阻并联
    发表于 07-05 14:48

    设计一个电源,如何考虑选择拓扑

    ,变换器占空比(开关导通时间与开关周期之比)受控制芯片最大和最小值的限制。在有些拓扑中,占空比不能大于0.5。总之,通用PWM控制IC芯片通常不保证占空比能大于0.85;有些芯片在合理的工作频率下,也不保
    发表于 07-05 10:58

    鸿蒙开发:【PageAbility的生命周期

    PageAbility生命周期是PageAbility被调度到INACTIVE、ACTIVE、BACKGROUND等各个状态的统称。PageAbility生命周期流转及状态说明见如下图1、1所示。
    的头像 发表于 06-17 10:05 641次阅读
    鸿蒙开发:【PageAbility的生命<b class='flag-5'>周期</b>】

    常见的电路拓扑结构

    开关电源的相关拓扑电路简化与原理及计算总结。
    发表于 05-29 14:53 11次下载

    反激电源拓扑dcm的特点是什么

    反激电源拓扑在非连续导通模式(Discontinuous Conduction Mode, DCM)下工作时,变压器的磁化电流在每个开关周期内会降到零,这意味着变压器的磁芯会进入不导磁的状态。DCM
    的头像 发表于 05-02 15:26 879次阅读
    反激电源<b class='flag-5'>拓扑</b>dcm的特点是什么

    中科院合肥研究院拓扑磁结构构筑研究获新进展

    拓扑磁结构具有独特的拓扑特性和优越的稳定性,便于电流调控,有潜力成为未来磁电子学器件的核心元件,从而突破传统磁存储的局限。早前,该团队已经成功地通过反转磁场控制生成多种拓扑荷磁结构,并在手性螺旋磁性
    的头像 发表于 04-28 16:52 693次阅读

    电感器磁芯材料性能比较

    电子发烧友网站提供《电感器磁芯材料性能比较.doc》资料免费下载
    发表于 02-27 15:57 0次下载

    buck电路的拓扑结构 buck电路临界条件怎么来的

    的基本原理。Buck电路通过周期性开关控制,将输入电压降低为较低的输出电压,并在输出端稳定地提供所需的电力。接着,详细剖析了Buck电路的拓扑结构,包括主要组成部分——功率开关、电感和滤波电容。 Buck电路的临界条件 选择合适的开关频率 讨论如何选择适当的
    的头像 发表于 02-14 17:31 3349次阅读

    什么是Mesh?Mesh组网拓扑结构浅析

    什么是Mesh?Mesh组网拓扑结构浅析  Mesh(网状结构)是一种网络拓扑结构,它由多个节点相互连接而成,每个节点都可以直接与其他节点通信。与其他拓扑结构如星型拓扑结构和总线
    的头像 发表于 02-04 14:07 2453次阅读

    网络拓扑结构有哪几种类型 网络拓扑结构的优缺点

    网络拓扑结构是指计算机网络中节点与连接线之间的总体布局形式。根据节点与连接线的布局形式,网络拓扑结构可以分为以下几种类型: 星型拓扑:星型拓扑是以一个中心节点为核心,其他所有节点都直接
    的头像 发表于 02-04 10:22 1907次阅读

    半导体材料在元素周期表中的位置

    半导体材料是一种在电子行业中使用广泛的材料,在元素周期表中它们的位置属于一些特定的元素群。半导体材料的特殊性使其成为电子设备制造中不可或缺的材料
    的头像 发表于 01-15 16:55 2673次阅读

    教你如何选择电源拓扑

    教你如何选择电源拓扑  选择适合的电源拓扑是设计电源系统的关键步骤之一。不同的电源拓扑适用于不同的应用场景和设计需求,因此了解各个拓扑的特点、优缺点以及适用范围是非常重要的。下面将详细
    的头像 发表于 11-29 11:09 791次阅读

    什么是走线的拓扑架构?怎样调整走线的拓扑架构来提高信号的完整性?

    什么是走线的拓扑架构?怎样调整走线的拓扑架构来提高信号的完整性? 走线的拓扑架构是指电子设备内部的信号线路布局方式。它对信号传输的完整性和稳定性有着重要影响。正确的走线拓扑架构可以降低
    的头像 发表于 11-24 14:44 622次阅读

    n型和p型半导体材料特性详解

    以同样的方式理解p型材料(如下图所示)。不同之处在于,只有元素周期表第三列的硼被用来使p型的硅掺杂。当硼与硅混合时,硼也从硅中吸取电子。然而,这里也只能凑齐三个外层电子,而不是四个电子,在原子的外环
    的头像 发表于 11-17 09:11 2378次阅读
    n型和p型半导体<b class='flag-5'>材料</b>特性详解