0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

随偏压变化的MLCC电容怎么测量

要长高 来源:中睿照明 2023-06-14 17:46 次阅读

设计人员往往忽略高容量、多层陶瓷电容MLCC)随其直流电压变化的特性。所有高介电常数或II类电容(B/X5R R/X7R和F/Y5V特性)都存在这种现象。然而,不同类型的MLCC变化量区别很大。Mark Fortunato曾经写过一篇关于该主题的文章,给出的结论是:您应该核对电容的数据资料,确认电容值随偏压的变化。但如果数据资料中未提供这一信息又该如何呢?您如何确定电容在具体应用条件下变小了多少?

对电容与偏压关系进行特征分析的理论

图1所示为一种测量直流偏压特性的电路。该电路的核心是运算放大器U1(MAX4130)。运放作为比较器使用,反馈电阻R2和R3增加滞回。D1将偏置设置在高于GND,所以不需要负电源电压。C1和R1从反馈网络连接至输入负端,使电路作为RC振荡器工作。电容C1为被测对象(DUT),作为RC振荡器中的C;电位计R1为RC振荡器中的R。

如何测量随偏压变化的MLCC电容

图1:对电容与偏压关系进行特征分析的电路

运放输出引脚的电压波形Vy以及R、C之间连接点的电压Vx如图2所示。当运放输出为5V时,通过R1对C1进行充电,直到电压达到上限,强制输出为0V;此时,电容放电,直到Vx达到下限,从而强制输出恢复为5V。该过程反复发生,形成稳定振荡。

如何测量随偏压变化的MLCC电容

图2: VX和VY的振荡电压

振荡周期取决于R、C,以及上门限VUP和下门限VLO:

如何测量随偏压变化的MLCC电容

由于5V、VUP和VLO固定不变,所以T1、T2与RC成比例(通常称为RC时间常数)。比较器门限是Vy、R2、R3及D1正向偏压(VsubDiode)的函数:

如何测量随偏压变化的MLCC电容

式中,VUP为Vy= 5V时的门限,VLO为Vy = 0V时的门限。给定参数后,这些门限的结果大约为:VLO为0.55V,VUP为1.00V。

Q1和Q2周围的电路将周期时间转换为比例电压。工作原理如下。MOSFET Q1由U1的输出控制。T1期间,Q1导通,将C3电压箝位至GND;T2期间,Q1关断,允许恒定电流源(Q2、R5、R6和R7)对C3进行线性充电。随着T2增大,C3电压升高。图3所示为三个周期的C3电压。

如何测量随偏压变化的MLCC电容

图3:T1期间,C3箝位至GND;T2期间,对其进行线性充电

C3电压(VC3)平均值等于:

如何测量随偏压变化的MLCC电容

由于I、C3、α和β均为常数,所以C3的平均电压与T2成比例,因此也与C1成比例。

低通滤波器R8/C4对信号进行滤波,低失调运放U2 (MAX9620)对输出进行缓冲,所以,允许使用任何电压表进行测量。测量之前,该电路需要进行简单校准。首先将DUT安装到电路,将VBIAS设定为0.78V (VLO和VUP的平均值),所以DUT上的实际平均(DC)电压为0V。调节电位计R1时,输出电压随之变化。调节R1,直到输出电压读数为1.00V。在这种条件下,C3的峰值电压为大约2.35V。可更改偏置电压,输出电压将显示电容值的变化百分比。例如,如果输出电压为0.80V,在特定偏置电压下的电容值将为偏置为0V时的80%。

在一块小PCB上搭建图1电路。首先使用一个10μF电容进行测量。图4和图5分别显示了0V和5V偏压条件下的信号。

如何测量随偏压变化的MLCC电容

图4:VBIAS = 0V时的测量结果,Ch1 = Vx;Ch2 = Vy;Ch3 = VC3。调节R1,使电压表读数为1.000V

如何测量随偏压变化的MLCC电容

图5. VBIAS = 5V时的测量结果。由于电容值减小,振荡周期已经明显缩短。Ch1 = Vx;Ch2 = Vy;Ch3 = VC3。电压表读数为0.671V

0V偏压时,调节电位计R1,使电压表读数为1.000V。5V偏压时,电压表读数为0.671V,说明电容值为原来的67.1%。利用高精度计数器,也测得总周期T。0V偏压下的T为4933?s,5V偏压下为0V,说明电容值为原来的66.5% (即3278μs/4933μs)。这些值非常一致,证明电路设计可高精度测量电容值随偏压的变化关系。

现在执行第二项测量,从Murata提供的样本中抽取2.2μF/16V电容(型号为GRM188R61C225KE15)。本次测量中,在0V至16V整个工作范围内记录电容值。通过测量电路的输出电压和实际振荡周期,确定相对电容。此外,从Murata Simsurfing工具采集数据;该工具可根据Murata的测量值提供具体器件的直流偏置特性。结果如图6所示。两条测量数据曲线所示的结果几乎完全相同,证明时间-电压转换电路在较大动态范围内工作良好。Simsurfing工具得到的数据与我们的测量结果之间存在一定差异,但曲线的形状相似。

如何测量随偏压变化的MLCC电容

图6:2.2μF/16V MLCC的相对电容与偏置电压的关系曲线。

电容值被标准化至0V偏压下的电容值。蓝色曲线基于电路输出电压的测量值;红色曲线基于振荡周期测量值;绿色曲线基于Murata Simsurfing工具提供的特征数据。

总结

利用介绍的电路、双电源和电压表,很容易测量高电容MLCC的直流偏压特征。简单的实验室测试能够证明电容值随偏置电压的变化。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MLCC
    +关注

    关注

    47

    文章

    711

    浏览量

    46104
  • 陶瓷电容
    +关注

    关注

    3

    文章

    445

    浏览量

    23998
  • 偏压
    +关注

    关注

    0

    文章

    4

    浏览量

    6926
收藏 人收藏

    评论

    相关推荐

    贴片电容的容值为什么会温度变化

    贴片电容的容值温度变化,主要是由于电容材料的物理特性受温度影响所致。今天我们一起来看看这个是什么原因吧!昂洋科技人员为大家介绍: 一、电容
    的头像 发表于 02-10 14:40 78次阅读
    贴片<b class='flag-5'>电容</b>的容值为什么会<b class='flag-5'>随</b>温度<b class='flag-5'>变化</b>?

    TDK推出高电容车载与商用MLCC新品

    TDK株式会社近日宣布,其车载用CGA系列和商用C系列积层陶瓷电容器(MLCC)产品阵容再次扩大,全新推出了3225尺寸(3.2 x 2.5 x 2.5毫米)的MLCC产品。 这款全新的3225尺寸
    的头像 发表于 02-07 11:36 582次阅读

    X7R材质的MLCC贴片电容价格是多少?

    X7R材质的MLCC(多层陶瓷电容器)贴片电容的价格因多种因素而异,包括电容的规格(如容量、电压、尺寸等)、品牌、供应商、采购数量以及市场供需情况等。以下是对X7R材质
    的头像 发表于 11-01 15:02 420次阅读
    X7R材质的<b class='flag-5'>MLCC</b>贴片<b class='flag-5'>电容</b>价格是多少?

    贴片电容MLCC失效分析----案例分析

    贴片电容MLCC失效分析----案例分析
    的头像 发表于 10-25 15:42 774次阅读
    贴片<b class='flag-5'>电容</b><b class='flag-5'>MLCC</b>失效分析----案例分析

    MLCC直流偏压特性解析

    在电子电路设计中,多层陶瓷电容器(MLCC)因其体积小、电性能优良而被广泛应用。然而,MLCC在直流电压下的容量会出现降低的现象,即直流偏压特性。这一特性对于电路的性能和可靠性有重要影
    的头像 发表于 10-20 12:04 826次阅读

    MLCC的温度特性

    多层陶瓷电容器(MLCC)的温度特性在电子设计中具有重要意义,特别是在对温度变化敏感的应用中。MLCC根据其介电材料的特性,主要分为一类瓷和二类瓷,两者在温度稳定性和
    的头像 发表于 10-20 12:00 671次阅读
    <b class='flag-5'>MLCC</b>的温度特性

    贴片电容陶瓷电容MLCC材质分类

    贴片电容陶瓷电容MLCC(Multi-layer Ceramic Capacitors,多层陶瓷电容器)根据温度特性、材质和生产工艺的不同,可以分为以下几种主要类型: 一、COG/NP
    的头像 发表于 09-30 09:33 431次阅读
    贴片<b class='flag-5'>电容</b>陶瓷<b class='flag-5'>电容</b><b class='flag-5'>MLCC</b>材质分类

    电容液位传感器是利用电容的什么变化实现测量

    电容液位传感器是一种利用电容器原理来测量液体高度的传感器。它通过测量两个导体之间的电容量变化来确定液位的
    的头像 发表于 09-19 09:46 870次阅读

    贴片电容MLCC的额定工作温度是多少?

    贴片电容MLCC(多层陶瓷贴片电容)的额定工作温度并不是一个固定的值,因为它受到多种因素的影响,包括电容器的类型、材料、封装形式以及具体的应用场景等。以下是对贴片
    的头像 发表于 09-11 16:07 607次阅读

    贴片电容(MLCC)焊接开裂如何避免?

    贴片电容(MLCC)焊接开裂是一个在电子制造过程中常见的问题,主要由热应力和机械应力引起。为了有效避免焊接开裂,可以从以下几个方面进行控制和优化:   一、优化焊接工艺 预热充分 :确保电容器在焊接
    的头像 发表于 08-28 15:33 558次阅读

    测量出运放的输入阻抗频率变化的图,可以用TINA-TI仿真吗?

    测量出运放的输入阻抗频率变化的图,可以用TINA-TI仿真吗,如果可以,怎么仿真。
    发表于 08-22 06:40

    电容传感器的测量转换电路有哪些

    电容传感器是一种将被测量变化转换为电容变化的传感器,具有精度高、灵敏度高、稳定性好等优点,广泛应用于工业自动化、机器人技术、生物医学等领域。电容
    的头像 发表于 07-22 11:18 1200次阅读

    电容传感器可以测量什么电路

    电容传感器是一种利用电容变化测量物理量或化学量的传感器。它具有结构简单、灵敏度高、稳定性好、抗干扰能力强等优点,被广泛应用于各种领域。 一、电容
    的头像 发表于 07-22 11:14 532次阅读

    MLCC陶瓷电容与普通电容器的区别

    MLCC具有体积小、电容量大、高频使用时损失率低、适合大量生产、价格低廉及稳定性高等特性。在信息产品讲求轻、薄、短、小的发展趋势及表面贴装技术(SMT)应用日益普及的市场环境下,MLCC具有良好的发展前景。
    的头像 发表于 03-07 17:29 2242次阅读
    <b class='flag-5'>MLCC</b>陶瓷<b class='flag-5'>电容</b>与普通<b class='flag-5'>电容</b>器的区别

    MLCC电容啸叫!?怎么让它闭嘴!

    架构的电容啸叫,让电容闭嘴,是一个有趣的问题。 MLCC电容器发生啸叫主要是由陶瓷的压电效应引起的,MLCC
    的头像 发表于 02-20 08:45 2096次阅读
    <b class='flag-5'>MLCC</b><b class='flag-5'>电容</b>啸叫!?怎么让它闭嘴!