0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

教你如何用两行代码搞定YOLOv8各种模型推理

OpenCV学堂 来源:OpenCV学堂 2023-06-18 11:50 次阅读

前言

大家好,YOLOv8 框架本身提供的API函数是可以两行代码实现 YOLOv8 模型推理,这次我把这段代码封装成了一个类,只有40行代码左右,可以同时支持YOLOv8对象检测、实例分割、姿态评估模型的GPUCPU上推理演示。

40d31286-0c1b-11ee-962d-dac502259ad0.png

程序实现

使用PyQT5开发一个简单的YOLOv8 框架本身提供的API函数演示交互界面,支持从界面上选择模型文件、测试图像或者视频文件,点击开始推理 按钮就可以运行了,整个程序的界面如下:

40dd21ea-0c1b-11ee-962d-dac502259ad0.png

YOLOv8框架支持的函数推理会自动识别模型的类型是对象检测、实例分割、姿态评估中哪一种,有GPU支持的情况下,默认会使用GPU推理。

推理运行在一个单独的PyQT线程中,通过信号与槽机制实现推理结果返回与更新。实现的线程代码如下:

classInferenceThread(QtCore.QThread):
fire_stats_signal=QtCore.pyqtSignal(dict)

def__init__(self,settings):
super(InferenceThread,self).__init__()
self.settings=settings
self.detector=YOLOv8PtInference(settings)
self.input_image=settings.input_image

defrun(self):
ifself.detectorisNone:
return
ifself.input_image.endswith(".mp4"):
cap=cv.VideoCapture(self.input_image)
whileTrue:
ret,frame=cap.read()
ifretisTrue:
self.detector.infer_image(frame)
self.fire_stats_signal.emit({"result":frame})
else:
break
else:
frame=cv.imread(self.input_image)
self.detector.infer_image(frame)
self.fire_stats_signal.emit({"result":frame})
self.fire_stats_signal.emit({"done":"done"})
return
直接通过PT模型推理的好处有两点,一个是不需要写部署代码了,二是精度不会在模型转化中有细微损失了。特别适合Python开发者

对象检测 - 运行截图如下:

40f12b54-0c1b-11ee-962d-dac502259ad0.png

实例分割-运行截图如下:

40fb5426-0c1b-11ee-962d-dac502259ad0.png

姿态评估-运行截图如下:

410fc550-0c1b-11ee-962d-dac502259ad0.png






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4768

    浏览量

    129326
  • python
    +关注

    关注

    56

    文章

    4807

    浏览量

    85015
  • pyqt5
    +关注

    关注

    0

    文章

    25

    浏览量

    3407

原文标题:两行代码搞定YOLOv8各种模型推理

文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于YOLOv8实现自定义姿态评估模型训练

    Hello大家好,今天给大家分享一下如何基于YOLOv8姿态评估模型,实现在自定义数据集上,完成自定义姿态评估模型的训练与推理
    的头像 发表于 12-25 11:29 2927次阅读
    基于<b class='flag-5'>YOLOv8</b>实现自定义姿态评估<b class='flag-5'>模型</b>训练

    【爱芯派 Pro 开发板试用体验】yolov8模型转换

    尝试将最新的yolov8模型转换为爱芯派的模型。 环境准备 准备Docker环境 首先自己在任意机器上准备好docker环境,详细步骤见官网。 Docker 镜像文件 准备 yolo8
    发表于 11-20 12:19

    使用YOLOv8做目标检测和实例分割的演示

    YOLOv8是来自Ultralytics的最新的基于YOLO的对象检测模型系列,提供最先进的性能。
    的头像 发表于 02-06 10:11 7644次阅读

    YOLOv8自定义数据集训练到模型部署推理简析

    如果你只是想使用而不是开发,强烈推荐通过pip安装方式获取YOLOv8包!YOLOv8安装命令行
    的头像 发表于 03-24 09:27 4752次阅读

    TensorRT 8.6 C++开发环境配置与YOLOv8实例分割推理演示

    YOLOv8实例分割TensorRT 推理代码已经完成C++类封装,三代码即可实现YOLOv8
    的头像 发表于 04-25 10:49 6017次阅读
    TensorRT 8.6 C++开发环境配置与<b class='flag-5'>YOLOv8</b>实例分割<b class='flag-5'>推理</b>演示

    在AI爱克斯开发板上用OpenVINO™加速YOLOv8目标检测模型

    《在 AI 爱克斯开发板上用 OpenVINO 加速 YOLOv8 分类模型》介绍了在 AI 爱克斯开发板上使用 OpenVINO 开发套件部署并测评 YOLOv8 的分类模型,本文将
    的头像 发表于 05-12 09:08 1378次阅读
    在AI爱克斯开发板上用OpenVINO™加速<b class='flag-5'>YOLOv8</b>目标检测<b class='flag-5'>模型</b>

    YOLOv8版本升级支持小目标检测与高分辨率图像输入

    YOLOv8版本最近版本又更新了,除了支持姿态评估以外,通过模型结构的修改还支持了小目标检测与高分辨率图像检测。原始的YOLOv8模型结构如下。
    的头像 发表于 05-16 11:14 1.2w次阅读
    <b class='flag-5'>YOLOv8</b>版本升级支持小目标检测与高分辨率图像输入

    AI爱克斯开发板上使用OpenVINO加速YOLOv8目标检测模型

    《在AI爱克斯开发板上用OpenVINO加速YOLOv8分类模型》介绍了在AI爱克斯开发板上使用OpenVINO 开发套件部署并测评YOLOv8的分类模型,本文将介绍在AI爱克斯开发板
    的头像 发表于 05-26 11:03 1317次阅读
    AI爱克斯开发板上使用OpenVINO加速<b class='flag-5'>YOLOv8</b>目标检测<b class='flag-5'>模型</b>

    Pytorch Hub两行代码搞定YOLOv5推理

    模型。支持模型远程加载与本地推理、当前Pytorch Hub已经对接到Torchvision、YOLOv5、YOLOv8、pytorchvi
    的头像 发表于 06-09 11:36 1200次阅读
    Pytorch Hub<b class='flag-5'>两行</b><b class='flag-5'>代码</b><b class='flag-5'>搞定</b><b class='flag-5'>YOLOv</b>5<b class='flag-5'>推理</b>

    三种主流模型部署框架YOLOv8推理演示

    深度学习模型部署有OpenVINO、ONNXRUNTIME、TensorRT三个主流框架,均支持Python与C++的SDK使用。对YOLOv5~YOLOv8的系列模型,均可以通过C+
    的头像 发表于 08-06 11:39 2812次阅读

    如何修改YOLOv8的源码

    很多人也想跟修改YOLOv5源码一样的方式去修改YOLOv8的源码,但是在github上面却发现找到的YOLOv8项目下面TAG分支是空的,然后就直接从master/main下面把源码克隆出来一通
    的头像 发表于 09-04 10:02 2124次阅读
    如何修改<b class='flag-5'>YOLOv8</b>的源码

    YOLOv8实现任意目录下命令行训练

    当你使用YOLOv8命令行训练模型的时候,如果当前执行的目录下没有相关的预训练模型文件,YOLOv8就会自动下载模型权重文件。这个是一个正常
    的头像 发表于 09-04 10:50 1182次阅读
    <b class='flag-5'>YOLOv8</b>实现任意目录下命令行训练

    OpenCV4.8+YOLOv8对象检测C++推理演示

    自从YOLOv5更新成7.0版本,YOLOv8推出以后,OpenCV4.6以前的版本都无法再加载导出ONNX格式模型了,只有OpenCV4.7以上版本才可以支持最新版本YOLOv5与
    的头像 发表于 09-27 11:07 1632次阅读
    OpenCV4.8+<b class='flag-5'>YOLOv8</b>对象检测C++<b class='flag-5'>推理</b>演示

    基于YOLOv8的自定义医学图像分割

    YOLOv8是一种令人惊叹的分割模型;它易于训练、测试和部署。在本教程中,我们将学习如何在自定义数据集上使用YOLOv8。但在此之前,我想告诉你为什么在存在其他优秀的分割模型时应该使用
    的头像 发表于 12-20 10:51 839次阅读
    基于<b class='flag-5'>YOLOv8</b>的自定义医学图像分割

    基于OpenCV DNN实现YOLOv8模型部署与推理演示

    基于OpenCV DNN实现YOLOv8推理的好处就是一套代码就可以部署在Windows10系统、乌班图系统、Jetson的Jetpack系统
    的头像 发表于 03-01 15:52 1858次阅读
    基于OpenCV DNN实现<b class='flag-5'>YOLOv8</b>的<b class='flag-5'>模型</b>部署与<b class='flag-5'>推理</b>演示