0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

主流OEM电子电气架构的演变进度

jf_C6sANWk1 来源:阿宝1990 2023-06-19 09:29 次阅读

现在汽车的电子电气架构逐步在更新,越来越多的ECU进行整合,从原来的分布式阶段逐步演进到域控制器和中央计算架构。在架构演进过程中,支撑这一变革的底层芯片也在逐步发展,越来越多的主机厂关注的是一整套的解决方案,而不是独立的芯片解决单独的区域。面向未来电子电气架构核心区域进行全场景布局的芯片厂商,将具备更明显的竞争优势。

主流OEM电子电气架构的演变进度

48152de4-0e3d-11ee-962d-dac502259ad0.png

博世认为汽车电子电气架构演变路径为分布式、域集中、中央集中式。电子电气架构逐步成为汽车产品的一个核心技术,过去汽车上的控制器相互独立,软件为嵌入式,整车做最终的集成即可,随着分布式架构朝着域控制器,主机厂自己掌握中央控制系统,否则就会失去对汽车产品的控制权。

特斯拉Model3开启了电子架构的变化,实现了中央域控制架构的雏形,被行业认为在电子电气架构方面领先传统车企6年以上。大部分车企的跨域电子电气架构在2023年量产,比如今年量产的小鹏G9;一些传统车企电子架构仍处于功能域早期,呈现“分布式ECU+域控制器”的过渡形态,向“中央计算单元+区域控制器”将可能耗时3-10年。我们来看看主流的主机厂和tier1的电子电气架构发展进程。

1.1 大众的电子电气架构

大众汽车MQB平台在2012年研发出来,到现在已经11年了,该平台售卖的车型超过3600W台,MQB平台的电子电气架构就是分布式,在平台升级为MEB的平台时,ID系列采用了E3架构。目前大众的ID系列的电子电气架构还处于E3 1.1版,在今年的PPE平台上搭载E3 1.2版本,从路径规划来看在2025年才能进化到E3 2.0版。

48361702-0e3d-11ee-962d-dac502259ad0.png

大众的MEB平台(首款车ID3)的E3架构

E3架构即由3个车辆应用服务器(ICAS,即In-Car Application )组成的新型集中式EE架构,具体包括:车辆控制服务器(ICAS1)、智能驾驶服务器(ICAS2)和智能座舱域(ICAS3);其中智能驾驶域ICAS2还在开发过程中,量产车型上搭载的依然是分布式架构方案。

484e4ea8-0e3d-11ee-962d-dac502259ad0.png

综合来看,大众还是比较稳扎稳打,一步一步进行渐进式的架构推进,并没有直接采用中央式架构,由此看的出来大众是那种稳中求胜的选手。

1.2 小鹏的电子电气架构

489cf45e-0e3d-11ee-962d-dac502259ad0.png

小鹏的电子电气架构最近这几年的演进非常不错,在G3采用的电子架构还是传统的架构时,在P7就升级为功能域控制器,而且该电子电气架构在那个时间节点都是非常领先的。

48f31a14-0e3d-11ee-962d-dac502259ad0.png

小鹏P7的搭载的第二代电子电气架构, ECU数量减少了60%,分层域控,也就是功能域控制器和中央域控制器并存,域控制器覆盖多重功能,保留了局部传统的ECU。大部分车身功能迁移到域控制器,中央处理器可以实现仪表、中控导航和智能车身控制的大部分功能,而且集成中央网。

在刚刚量产的G9车型中,小鹏的电子电气架构已经迭代到X-EEA 3.0版本了,成为首款可以支持 XPILOT 4.0的智能辅助驾驶系统的量产车。

通过上图可以看到X-EEA 3.0硬件架构方面,采用了中央超算+区域控制的硬件架构,中央超算包括车控、座舱、智驾3个域控制器,区域控制器分为左右控制器,将更多控制件分区,类似于特斯拉的架构,采用就近分配的原则,分区接管相应功能,大幅缩减线束。

1.3 特斯拉的电子电气架构

49541422-0e3d-11ee-962d-dac502259ad0.png

特斯拉在电子电气架构方面是先驱者,2012年的model S有较为明显的功能域,包括动力域 PowerTrain、底盘域 Chassis、车身域 ,ADAS模块横跨了动力和底盘域。

Model X 的部分控制器出现跨网段的特征,有比较明显的多域控制器MDC 趋势。比如中央车身控制器 Central Body Control Module 横跨了底盘 Chassis、车身低速容错 Body FT 以及车身 Body。2017年特斯拉推出的model 3突破了功能域的框架,实现中央计算+区域控制器的框架。

Model 3 标志着特斯拉从域控制器的阶段直接进入多域控制器阶段。单个控制器可以对接到传统意义下不同功能的传感器,通过一块 ECU 来接入不同的传感器得到的数据,对其进行分析,最终发出控制的指令。

Model 3 四大控制器 AICM(辅助驾驶及娱乐控制模块)、BCM RH(右车身控制器)、BCM LH(左车身控制器)以及 BCM FH(前车身控制器)控制着整辆车几乎所有的功能。

496bd90e-0e3d-11ee-962d-dac502259ad0.png

特斯拉三代车的电子电气架构演进的本质原因,是不断把车辆功能的控制权收回到自主开发的过程,model3的自动驾驶模块、娱乐控制模块、其他区域控制器、热管理都是自己进行开发设计,实现了关键核心模块掌握在自己手里,避免被别人卡脖子,即使刹车系统使用博世的ibooster,特斯拉也参与一脚,把自己的软件加入到这个模块里面,通过软件更新实现刹车距离变短。

大部分企业规划的跨域融合的电子电气架构在2022年和2023年量产,基本上逐步开始域控制器,减少分布式ECU。2025年部分车企落地中央计算+区域控制器的电子电气架构,从而实现软硬件进一步的集成化,让车厂对于软件的控制权往回收。

头部主机厂公布的下一代电子电气架构,将实现车辆功能域的进一步集成:“五域”(自动驾驶域+动力域+底盘域+座舱域+车身域)逐步向集成度更高的“三域”(自动驾驶域+智能座舱域+车控域+若干网关)迈进,即:除智驾域、座舱域外,将底盘、动力传动以及车身三大功能域直接整合成一个“整车控制域(Vehicle Domain Controller,VDC)”。

在这个过程中,越来越多的主机厂关注的是一整套的解决方案,而不是独立的芯片解决单独的区域。除了主机厂外,Tier 1和芯片厂商也在深入探索跨域融合和中央计算架构的演进,在产品、架构和解决方案上与主机厂节奏保持一致。

核心域控芯片竞争格局

如果我们按照整车三大架构来进行分析:

根据安全性排序:车身底盘动力域>自动驾驶域>座舱域

从产品形态变化、产业链格局演变情况来看:座舱域>自动驾驶域>车身底盘动力域

由于目前座舱域在硬件上与底层的控制和算法做了物理隔离,能够看到主机厂在座舱方面的尝试最为激进,最典型的代表就是车内大屏与液晶仪表盘的渗透率快速提升。

而车身动力域由于安全性要求最高,并且和底层控制深度耦合,因此无论是产品形态还是产业链的格局,相对变化都较小。而自动驾驶域因为对算力要求远超从前,因此产业链逐步增加了新的供应商。

而这几个域里面,驾驶辅助/自动驾驶域、智能座舱域为汽车未来核心,因为这些域是直接关联用户体验感受的,是目前提升空间最大的。

4a21988e-0e3d-11ee-962d-dac502259ad0.png

2.1智能座舱

可以看到有很多科技公司和传统的车载芯片公司,都在全力以赴进行智能座舱域控制器芯片的布局。

智能座舱域控制器芯片市场主要玩家:

1.海外传统汽车芯片厂商,主打中低端市场:NXP德州仪器瑞萨电子等;

2.海外手机领域的厂商,主打高端市场:联发科三星高通等。

3.国内新兴智能车芯竞争者:芯驰科技等。

随着智能座舱时代的到来,除了常见的“一芯多屏”功能,对于座舱主芯片的算力,架构、外设都有更高的要求,特别是安全层面,这样才能更好地保护用户在智能座舱的数据安全和稳定性。

案例介绍:芯驰X9系列处理器

X9系列处理器集成了高性能CPUGPU、AI加速器,以及视频处理器,能够满足新一代汽车电子座舱应用对强大的计算能力、丰富的多媒体性能等日益增长的需求。可支持一芯多屏,同时覆盖全液晶仪表、中控娱乐导航、副驾娱乐、抬头显示、电子后视镜、DMS驾驶员监测系统、OMS乘客监测系统、虚拟空调面板、360环视+APA自动泊车辅助、DVR行车记录仪、语音系统等所有座舱功能,支持舱泊一体。

同时,X9系列处理器集成了PCIe3.0、USB3.0、千兆以太网CAN-FD,能够以较小造价无缝衔接应用于车载系统。该款处理器还采用了包含Cortex-R5双核锁步模式的安全岛,能应用于对安全性能要求严苛的场景。

智能座舱的主控芯片对于安全性越来越高,特别是要带动仪表屏,这部分对于安全方面的功能安全至少要达到ASIL-B的功能安全,在安卓中控死机的情况下,依旧能保障仪表的正常运行。

刚过去不久的上海车展上,芯驰发布了X9系列的最新产品X9SP。

X9SP产品特性

- 12核ARM Cortex-A55处理器,100KDMIPS

- Imagination PowerVR 3D GPU,220GFLOPS

- 针对汽车应用场景优化的NPU, 8 TOPS

- 车规级ISP,高达1Gpixel/s图像处理能力,支持800万像素摄像头输入

- 高性能VPU,支持H.264/H.265/MJPEG编解码,4Kp60

- 2路MIPI CSI / 2路MIPI DSI / 4路LVDS输出

- 内置安全岛,集成一组800MHz双核锁步ARM Cortex-R5F MCU

-内置硬件安全模块,集成一组800MHz双核锁步ARM Cortex-R5F MCU,支持国密认证SM2/SM3/SM4/SM9

- 支持9个摄像头输入,覆盖360环视、DMS、OMS、DVR

典型解决方案框图

4a3f8d1c-0e3d-11ee-962d-dac502259ad0.png

值得一提的是,X9SP在无需使用Hypervisor的情况下,即可支持两个操作系统的独立运行,大大降低了开发难度,提升了系统资源的运行效率。在性能显著提升的同时,X9SP和前一代产品X9HP保持了硬件Pin-To-Pin兼容和软件兼容,一个月即可从X9HP平滑升级至X9SP,仅需9个月左右就可实现车型快速量产,最大程度优化开发成本,并同时大大降低研发投入。

从性能、安全认证等指标来看,芯驰座舱产品已经达到国际一流水平,是国内创新型车芯厂商中座舱芯片量产进度最快的企业之一,拥有几十个重磅定点车型。上汽、奇瑞、长安等车企旗下搭载芯驰智能座舱X9系列芯片的车型已量产上市;同时,芯驰与斑马智行联合发布智能座舱生态化平台,推进舱行泊一体落地。

案例介绍:高通8155处理器

高通骁龙8155是由消费芯片“魔改”而来的芯片,采用1+3+4的8核心设计,其中大核主频为 2.96GHz,三个高性能核心主频为 2.42GHz,四个低功耗小核主频为 1.8GHz。芯片的AI算力可以达到8TOPS,能够实现蓝牙5.0、WI-FI6等连接能力。

高通8155的性能比较强,不过因为基于手机芯片改进而来,其本质是耐用的消费电子芯片,在电路设计之初没有考虑ECC这类汽车芯片需要的功能。如果因为干扰或内部数据传输总线随机的错误,其车内显示屏就无法正常工作或者不完整,表现为显示花屏、闪屏或者黑屏。不过,虽然在某些安全性、耐用性上没有传统汽车芯片那么高,在新势力车企及一些高端车型上,高通8155仍深受青睐。目前,威马W6、WEY摩卡、吉利星越L等车型都搭载了SA8155P芯片。

2.2 智能驾驶

智能驾驶正在逐渐回归理性,不再盲目跟风追求高算力。此前比亚迪董事长王传福提到:“无人驾驶都是扯淡,弄个虚头巴脑的东西,那都是忽悠,它就是一场皇帝的新装。”在他看来,未来的主要方向还是高级辅助驾驶,需要驾驶员扶着方向盘,特殊路况的无人驾驶应用场景目前还很少。ADAS算法、高阶辅助驾驶在资本裹挟下被神化了,市场会慢慢回归理性。

当下,行泊一体域控制器需求正在全面爆发阶段。

案例介绍:德州仪器 TDA4

4b015c08-0e3d-11ee-962d-dac502259ad0.png

基于 TI 的双 TDA4VM 的 NOA 行泊一体化方案采用了两颗 TDA4VM,单芯片 C7x/MMA 可以实现 8TOPS 算力,总算力 16TOPS 。该方案接入了 11 个摄像头、5 个毫米波雷达 12 个超声波雷达,即 11V5R12USS 行泊一体化解决方案。其系统框图如上图所示,TDA4VM_A 接入了四个全景摄像头和两个前向摄像头。TDA4VM_B 接入了四个侧视摄像头和一个前向摄像头。

行车方面可实现盲区检测 (BSD)、开门预警 (DOW)、车道偏离预警 (LCW)、前向碰撞预警 (FCW)、智能远光灯控制 (IHC)、前方穿行预警 (FCTA)、后方穿行预警 (RCTA)、后方碰撞预警 (RCW)、自适应巡航 (ACC)、车道保持辅助 (LKA)、手动变道 (PLC)、交通拥堵辅助 (TJA)、高速辅助驾驶 (HWA)、自动紧急制动 (AEB)、交互式高速公路自动驾驶 (HWP)、交互式高速公路拥堵自动驾驶 (TJP)、自动辅助导航驾驶 (NOA) 等功能;

泊车方面可实现全景功能 (AVM)、自动泊车辅助 (APA)、遥控泊车辅助 (RPA)、家庭区域记忆泊车 (HAVP) 等功能。

案例介绍:行泊一体智驾芯片芯驰V9P

芯驰推出的L2+单芯片量产解决方案V9P,CPU性能70KDMIPS,GPU达200GFLOPS,整体AI性能20TOPS,在单个芯片上即可实现AEB(自动紧急刹车)、ACC(自适应巡航)、LKA(车道保持)等主流L2+ ADAS的各项功能和辅助泊车、记忆泊车功能,并能集成行车记录仪和高清360环视。V9P内置独立安全岛,无需外置MCU便可实现真正的单芯片行泊一体方案,有效地节约系统成本。

产品特性:

-NPU整体算力达20TOPS,同时支持算力扩展

-8核ARM Cortex-A55 CPU, 70K DMIPS

-Imagination PowerVR 3D GPU, 200GFLOPS

-车规级ISP模块,高达1Gpixel/s图像处理能力,支持800万像素摄像头输入

-高性能VPU,支持H.264/H.265/MJPEG编解码, 4Kp120

-2路MIPI-CSI接口/ 1路Parallel CSI接口/2路MIPI DSI接口

-支持最多9路摄像头输入及2路高清显示

-8路CAN-FD接口/2路千兆以太网/2路PCIe 3.0接口

-内置安全岛,集成800MHz双核锁步ARM Cortex-R5F MCU

典型解决方案框图

4b2a7840-0e3d-11ee-962d-dac502259ad0.png

面向量产的APA解决方案(全自动泊车辅助系统)。该方案采用4个鱼眼摄像头和12个超声波雷达实现APA功能,基于CV算法,完成对车位的识别和障碍物检测,结合超声波雷达,适应多种车位和工况。

在L2+及以上高阶智能驾驶领域,天准科技、东软睿驰等Tier 1厂商也在推进国产化的域控制器落地方案。

案例介绍:天准科技TADC系列高阶自动驾驶域控制器

天准推出了基于地平线双征程5+芯驰X9U+芯驰E3平台的TADC-D52高配域控制器方案,面向城市NOA和记忆泊车、自动泊车、360环视等高阶自动驾驶场景;以及基于地平线单征程5+芯驰G9H+芯驰E3平台的TADC-D51中配域控制器方案,面向高速NOA和记忆泊车、自动泊车、360环视等自动驾驶场景。两款产品已于2022年8月实现全部功能的一次性点亮,并于2023年3月份完成全部的DV测试并顺利通过,将在2023年下半年完成PV测试达到量产状态。

案例介绍:东软睿驰自动驾驶域控制器X-Box4.0

东软睿驰自动驾驶域控制器X-Box4.0是基于SDV开发模式下的全新L2+级别域控制器标准品。东软睿驰基于芯驰X9系列以及地平线征程5系列人工智能芯片,实现了中国自动驾驶产业自主化芯片、算法、软件、硬件在研发和量产应用链条方面的全面打通。

全场景芯片布局有助于车厂电子电气架构演进

随着主机厂电子电气架构的不断演进,在集中式域控制器架构的核心主芯片选择上,理想情况下,主机厂更愿意选择同一家车规级SoC芯片厂商,供应链更简单,配合度更紧密,软硬件的适配性更好,可以快速做一些功能的融合设计与开发。从这个角度来说,做核心域控车规芯片全场景布局的厂商在未来将更具有竞争优势。

以芯驰为例,由于在智舱、智驾、网关和MCU控制类芯片均有布局,作为芯片厂商芯驰率先推出了面向未来中央计算的架构SCCA2.0,给主机厂提供底层参考。

高性能中央计算单元:采用高性能X9、V9处理器作为开放式计算核心,并集成G9和E3用于高可靠运算,CPU总算力达到300KDMIPS,作为未来汽车的大脑,实现智能座舱、自动驾驶、整车的车身控制,并提供高速网络交互和存储共享服务等功能,未来芯驰将持续升级,把上述功能逐步集成到一颗芯片上。

高可靠智能车控单元:采用G9处理器和E3 MCU构成的高性能智能车控单元(Vehicle HPC)作为底盘域+动力域的集成控制器,实现底盘和动力的融合以及智能操控。

4个区域控制器:以高性能高可靠的E3多核MCU为核心,实现在车内四个物理区域内的数据交互和各项控制功能。

6个核心单元之间采用10G/1Gbps高性能车载以太网实现互联,并采用冗余架构,既确保了低延迟高流量的数据交换,又能确保安全性。

SCCA2.0是一个足够开放的系统,既可以全套采用芯驰的全场景芯片方案,也能够兼容其他的芯片产品,灵活匹配,全面赋能车企。

中央计算,需要将原本不同的域控制器融合在一起,它不仅仅是堆砌算力那么简单,而是需要在硬件和软件上,渐进式的不断打通和磨合,因此中央计算不会一蹴而就,它需要芯片厂商和车厂、Tier1以落地量产为目标,共同摸索前行。

在传统分布式架构时期,主要由少数几家国际巨头掌握行业话语权,希望在电子电气架构变革的过程中,更多的中国厂商能积极参与,为行业的发展做出更多贡献。
责任编辑:彭菁

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    456

    文章

    51075

    浏览量

    425855
  • 控制器
    +关注

    关注

    112

    文章

    16427

    浏览量

    178901
  • OEM
    OEM
    +关注

    关注

    4

    文章

    403

    浏览量

    50419
收藏 人收藏

    评论

    相关推荐

    汽车电子电气架构线束和连接器分析

    降低线束复杂程度,依赖电子电气架构的革新。根据博世的电子电气架构战略图,汽车的
    发表于 07-21 15:19 5353次阅读

    汽车电子电气架构软件关键技术解析

    汽车电子电气架构从传统分布式架构正在朝向域架构、中央计算架构转变,车内控制系统趋于形成统一的
    发表于 11-17 20:08 1773次阅读

    汽车电子电气架构设计及优化措施

    我国公路建设事业的蓬勃发展导致在汽车行业中的电子电气架构设计越来越体现消费者对汽车人性化、舒适化与美观性的现实需求。设计汽车的电子电气
    发表于 10-18 22:10

    汽车电子电气架构开发咨询服务内容和优势

    汽车电子电气架构开发咨询服务
    发表于 01-05 07:34

    如何去搭建汽车电子电气架构

    1、汽车电子电气架构:汽车的中枢神经1.1. 汽车电子电气架构 EEA:
    发表于 08-26 11:55

    分区电子电气架构如何支持软件定义汽车

    了布线成本和重量,并提供了可扩展的集中化软件,为加速软件和无线更新驱动的汽车创新奠定基础。架构演变趋势:从域到区域为什么分区电子电气架构非常
    发表于 02-23 14:43

    介绍汽车电子电气架构演变和发展

    汽车电子电气架构的开发包括需求定义、逻辑功能架构设计、软件/服务架构设计、硬件架构设计、线束设计
    发表于 10-24 11:53 4591次阅读

    保时捷Taycan的电子电气架构详解

    电子电气架构作为车辆主要的基础建设之一,在当前智能化、电动化的趋势下,其重要性更为突出。之前对特斯拉、大众ID系列、奥迪、宝马等车型的电子电气
    发表于 11-24 17:33 1196次阅读

    什么是电子电气架构?汽车电子电气架构面临的挑战

    所谓汽车电子电气架构(Electrical/Electronic Architecture, EEA)是集合了汽车的电子电气系统原理设计、中
    发表于 11-29 09:43 7278次阅读

    四款汽车电子主机厂电子电气架构对比

    新势力三强中小鹏汽车在电子电气架构方面走得比较领先,随着车型从 G3、P7 和 P5,迭代到 G9 的这套 X-EEA3.0 电子电气
    发表于 01-11 12:06 1384次阅读

    主流车企电子电气架构进化对比分析

    特斯拉是汽车电子电气架构的全面变革者,2012年 Model S 有较为明显的功能域划分,包括动力域、底盘域、车身域,ADAS模块横跨了动力和底盘域,由于传统域架构无法满足自动驾驶技术
    发表于 02-28 10:23 721次阅读

    自动驾驶汽车电子电气架构

    电子电气架构是汽车电子电气系统的顶层设计,目的是在政策法规和设计指标等约束条件下,对功能、成本和装配等方面进行具体分析,得出最优的
    发表于 06-01 11:36 4次下载
    自动驾驶汽车<b class='flag-5'>电子</b><b class='flag-5'>电气</b><b class='flag-5'>架构</b>

    浅谈电子电气架构的发展史

    电子电气架构专家侯旭光先生在《智能汽车:电子电气架构详解》一书中,从“终端客户需求”与“
    的头像 发表于 07-15 17:02 1233次阅读
    浅谈<b class='flag-5'>电子</b><b class='flag-5'>电气</b><b class='flag-5'>架构</b>的发展史

    一文详解电子电气架构的演进

    虽然电子电气架构的概念在过去的20年间才逐渐发展起来,电子电气系统却已经有了超过40年的历史。在电子
    的头像 发表于 07-19 11:31 4352次阅读
    一文详解<b class='flag-5'>电子</b><b class='flag-5'>电气</b><b class='flag-5'>架构</b>的演进

    汽车电子电气架构为什么要做中央集成?

    汽车电子电气架构是指汽车中的各类传感器、电子控制单元(ECU)、线束拓扑和电子电气分配系统的整合
    发表于 08-18 10:02 1094次阅读
    汽车<b class='flag-5'>电子</b><b class='flag-5'>电气</b><b class='flag-5'>架构</b>为什么要做中央集成?