参考
https://www.toradex.cn/blog/nxp-imx8ji-yueiq-kuang-jia-ce-shi-machine-learning
IMX-MACHINE-LEARNING-UG.pdf
CPU和NPU图像分类
cd /usr/bin/tensoRFlow-lite-2.4.0/examples
CPU运行
./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt
INFO: Loaded model mobilenet_v1_1.0_224_quant.tflite
INFO: resolved reporter
INFO: invoked
INFO: averagetime:50.66ms
INFO: 0.780392: 653 military unIForm
INFO: 0.105882: 907 Windsor tie
INFO: 0.0156863: 458 bow tie
INFO: 0.0117647: 466 bulletproof vest
INFO: 0.00784314: 835 suit
GPU/NPU加速运行
./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt-a 1
INFO: Loaded model mobilenet_v1_1.0_224_quant.tflite
INFO: resolved reporter
INFO: Created TensorFlow Lite delegate for NNAPI.
INFO: Applied NNAPI delegate.
INFO: invoked
INFO: average time:2.775ms
INFO: 0.768627: 653 military uniform
INFO: 0.105882: 907 Windsor tie
INFO: 0.0196078: 458 bow tie
INFO: 0.0117647: 466 bulletproof vest
INFO: 0.00784314: 835 suit
USE_GPU_INFERENCE=0./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt--external_delegate_path=/usr/lib/libvx_delegate.so
Python运行
python3 label_image.py
INFO: Created TensorFlow Lite delegate for NNAPI.
Applied NNAPI delegate.
WARM-up time:6628.5ms
Inference time: 2.9 ms
0.870588: military uniform
0.031373: Windsor tie
0.011765: mortarboard
0.007843: bow tie
0.007843: bulletproof vest
基准测试CPU单核运行
./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite
STARTING!
Log parameter values verbosely: [0]
Graph: [mobilenet_v1_1.0_224_quant.tflite]
Loaded model mobilenet_v1_1.0_224_quant.tflite
The input model file size (MB): 4.27635
Initialized session in 15.076ms.
Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds.
count=4 first=166743 curr=161124 min=161054 max=166743avg=162728std=2347
Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 150 seconds.
count=50 first=161039 curr=161030 min=160877 max=161292 avg=161039std=94
Inference timings in us: Init: 15076, First inference: 166743, Warmup (avg):162728, Inference (avg):161039
Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=2.65234 overall=9.00391
CPU多核运行
./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --num_threads=4
4核--num_threads设置为4性能最好
STARTING!
Log parameter values verbosely: [0]
Num threads: [4]
Graph: [mobilenet_v1_1.0_224_quant.tflite]
#threads used for CPU inference: [4]
Loaded model mobilenet_v1_1.0_224_quant.tflite
The input model file size (MB): 4.27635
Initialized session in 2.536ms.
Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds.
count=11 first=48722 curr=44756 min=44597 max=49397 avg=45518.9 std=1679
Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 150 seconds.
count=50 first=44678 curr=44591 min=44590 max=50798avg=44965.2std=1170
Inference timings in us: Init: 2536, First inference: 48722, Warmup (avg):45518.9, Inference (avg):44965.2
Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=1.38281 overall=8.69922
GPU/NPU加速
./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --num_threads=4 --use_nnapi=true
STARTING!
Log parameter values verbosely: [0]
Num threads: [4]
Graph: [mobilenet_v1_1.0_224_quant.tflite]
#threads used for CPU inference: [4]
Use NNAPI: [1]
NNAPI accelerators available: [vsi-npu]
Loaded model mobilenet_v1_1.0_224_quant.tflite
INFO: Created TensorFlow Lite delegate for NNAPI.
Explicitly applied NNAPI delegate, and the model graph will be completely executed by the delegate.
The input model file size (MB): 4.27635
Initialized session in 3.968ms.
Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds.
count=1 curr=6611085
Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 150 seconds.
count=369 first=2715 curr=2623 min=2572 max=2776avg=2634.2std=20
Inference timings in us: Init: 3968, First inference: 6611085, Warmup (avg): 6.61108e+06, Inference (avg): 2634.2
Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=2.42188 overall=28.4062
结果对比
CPU运行 | CPU多核多线程 | NPU加速 | |
图像分类 | 50.66 ms | 2.775 ms | |
基准测试 | 161039uS | 44965.2uS | 2634.2uS |
OpenCV DNN
cd /usr/share/OpenCV/samples/bin
./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet
下载模型
cd /usr/share/opencv4/testdata/dnn/
python3 download_models_basic.py
图像分类
cd /usr/share/OpenCV/samples/bin
./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet
文件浏览器地址栏输入
ftp://ftp.toradex.cn/Linux/i.MX8/eIQ/OpenCV/Image_Classification.zip
下载文件
解压得到文件models.yml和squeezenet_v1.1.caffemodel
cd /usr/share/OpenCV/samples/bin
将文件导入到开发板的/usr/share/OpenCV/samples/bin目录下
$cp/usr/share/opencv4/testdata/dnn/dog416.png /usr/share/OpenCV/samples/bin/
$cp/usr/share/opencv4/testdata/dnn/squeezenet_v1.1.prototxt /usr/share/OpenCV/samples/bin/
$cp/usr/share/OpenCV/samples/data/dnn/classification_classes_ILSVRC2012.txt /usr/share/OpenCV/samples/bin/
$ cd /usr/share/OpenCV/samples/bin/
图片输入
./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet
报错
root@myd-jx8mp:/usr/share/OpenCV/samples/bin# ./example_dnn_classification --input=dog416.png --zoo=model.yml squeezenet
ERRORS:
Missing parameter: 'mean'
Missing parameter: 'rgb'
加入参数--rgb 和 --mean=1
还是报错加入参数--mode
root@myd-jx8mp:/usr/share/OpenCV/samples/bin# ./example_dnn_classification --rgb --mean=1 --input=dog416.png --zoo=models.yml squeezenet
[WARN:0]global/usr/src/debug/opencv/4.4.0.imx-r0/git/modules/videoio/src/cap_gstreamer.cpp (898) open OpenCV | GStreamer warning: unable to query duration of stream
[WARN:0]global/usr/src/debug/opencv/4.4.0.imx-r0/git/modules/videoio/src/cap_gstreamer.cpp (935) open OpenCV | GStreamer warning: Cannot query video position: status=1, value=0, duration=-1
root@myd-jx8mp:/usr/share/OpenCV/samples/bin#./example_dnn_classification --rgb --mean=1 --input=dog416.png --zoo=models.yml squeezenet --mode
[WARN:0]global/usr/src/debug/opencv/4.4.0.imx-r0/git/modules/videoio/src/cap_gstreamer.cpp (898) open OpenCV | GStreamer warning: unable to query duration of stream
[WARN:0]global/usr/src/debug/opencv/4.4.0.imx-r0/git/modules/videoio/src/cap_gstreamer.cpp (935) open OpenCV | GStreamer warning: Cannot query video position: status=1, value=0, duration=-1
视频输入
./example_dnn_classification --device=2 --zoo=models.yml squeezenet
问题
如果testdata目录下没有文件,则查找下
lhj@DESKTOP-BINN7F8:~/myd-jx8mp-yocto$ find . -name "dog416.png"
./build-xwayland/tmp/work/cortexa53-crypto-mx8mp-poky-linux/opencv/4.4.0.imx-r0/extra/testdata/dnn/dog416.png
再将相应的文件复制到开发板
cd./build-xwayland/tmp/work/cortexa53-crypto-mx8mp-poky-linux/opencv/4.4.0.imx-r0/extra/testdata/
tar -cvf /mnt/e/dnn.tar ./dnn/
cd/usr/share/opencv4/testdata目录不存在则先创建
rz导入dnn.tar
解压tar -xvf dnn.tar
terminate calLEDafter throwing an instance of 'cv::Exception'
what():OpenCV(4.4.0)/usr/src/debug/opencv/4.4.0.imx-r0/git/samples/dnn/classification.cpperrorAssertion failed) !model.empty() in function 'main'
Aborted
lhj@DESKTOP-BINN7F8:~/myd-jx8mp-yocto/build-xwayland$ find . -name classification.cpp
lhj@DESKTOP-BINN7F8:~/myd-jx8mp-yocto/build-xwayland$ cp ./tmp/work/cortexa53-crypto-mx8mp-poky-linux/opencv/4.4.0.imx-r0/packages-split/opencv-src/usr/src/debug/opencv/4.4.0.imx-r0/git/samples/dnn/classification.cpp /mnt/e
lhj@DESKTOP-BINN7F8:~/myd-jx8mp-yocto/build-xwayland$
YOLO对象检测
cd /usr/share/OpenCV/samples/bin
./example_dnn_object_detection --width=1024 --height=1024 --scale=0.00392 --input=dog416.png --rgb --zoo=models.yml yolo
https://pjreddie.com/darknet/yolo/下载cfg和weights文件
cd/usr/share/OpenCV/samples/bin/
导入上面下载的文件
cp/usr/share/OpenCV/samples/data/dnn/object_detection_classes_yolov3.txt/usr/share/OpenCV/samples/bin/
cp/usr/share/opencv4/testdata/dnn/yolov3.cfg/usr/share/OpenCV/samples/bin/./example_dnn_object_detection --width=1024 --height=1024 --scale=0.00392 --input=dog416.png --rgb --zoo=models.yml yolo
OpenCV经典机器学
cd /usr/share/OpenCV/samples/bin
线性SVM
./example_tutorial_introduction_to_svm
非线性SVM
./example_tutorial_non_linear_svms
PCA分析
./example_tutorial_introduction_to_pca ../data/pca_test1.jpg
逻辑回归
./example_cpp_logistic_regression
-
嵌入式开发
+关注
关注
18文章
1028浏览量
47564
发布评论请先 登录
相关推荐
评论