0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

喇叭SPK胶粘技术产品的解决方案

向欣电子 2022-03-29 10:38 次阅读

关键词:胶粘剂(胶水,接着剤、粘接剂),胶接工艺,胶粘技术

引言:胶接是通过具有黏附能力的物质,把同种或不同种材料牢固地连接在起的方法。具有黏附能力的物质称为胶粘剂或黏合剂,被胶接的物体称为被粘物,胶粘剂和被黏物构成的组件称为胶接接头。其主要优点是操作简单、生产率高;工艺灵活、快速、简便;接头可靠、牢固、美观产品结构和加工工艺简单;省材、省力、成本低、变形小。容易实现修旧利废接技术可以有效地应用于不同种类的金属或非金属之间的联接等。

胶水(胶粘剂)の紹介

胶粘剂的组成

现在使用的胶粘剂均是采用多种组分合成树脂胶粘剂,单一组分的胶粘剂已不能满足使用中的要求。合成胶粘剂由主剂和助剂组成,主剂又称为主料、基料或粘料;助剂有固化剂、稀释剂、增塑剂、填料、偶联剂、引发剂、增稠剂、防老剂、阻聚剂、稳定剂、络合剂、乳化剂等,根据要求与用途还可以包括阻燃剂、发泡剂、消泡剂、着色剂和防霉剂等成分。1.主剂主剂是胶粘剂的主要成分,主导胶粘剂粘接性能,同时也是区别胶粘剂类别的重要标志。主剂一般由一种或两种,甚至三种高聚物构成,要求具有良好的粘附性和润湿性等。通常用的粘料有:
·天然高分子化合物如蛋白质、皮胶、鱼胶、松香、桃胶、骨胶等。2)合成高分子化合物①热固性树脂,如环氧树脂、酚醛树脂、聚氨酯树脂、脲醛树脂、有机硅树脂等。②热塑性树脂,如聚醋酸乙烯酯、聚乙烯醇及缩醛类树脂、聚苯乙烯等。③弹性材料,如丁腈胶、氯丁橡胶、聚硫橡胶等。④各种合成树脂、合成橡胶的混合体或接枝、镶嵌和共聚体等。

2.助剂为了满足特定的物理化学特性,加入的各种辅助组分称为助剂,例如:为了使主体粘料形成网型或体型结构,增加胶层内聚强度而加入固化剂(它们与主体粘料反应并产生交联作用);为了加速固化、降低反应温度而加入固化促进剂或催化剂;为了提高耐大气老化、热老化、电弧老化、臭氧老化等性能而加入防老剂;为了赋予胶粘剂某些特定性质、降低成本而加入填料;为降低胶层刚性、增加韧性而加入增韧剂;为了改善工艺性降低粘度、延长使用寿命加入稀释剂等。包括:
1)固化剂固化剂又称硬化剂,是促使黏结物质通过化学反应加快固化的组分,它是胶粘剂中最主要的配合材料。它的作用是直接或通过催化剂与主体聚合物进行反应,固化后把固化剂分子引进树脂中,使原来是热塑性的线型主体聚合物变成坚韧和坚硬的体形网状结构。
固化剂的种类很多,不同的树脂、不同要求采用不同的固化剂。胶接的工艺性和其使用性能是由加人的固化剂的性能和数量来决定的。
2)增韧剂

增韧剂的活性基团直接参与胶粘剂的固化反应,并进入到固化产物最终形成的一个大分子的链结构中。没有加入增韧剂的胶粘剂固化后,其性能较脆,易开裂,实用性差。加入增韧剂的胶接剂,均有较好的抗冲击强度和抗剥离性。不同的增韧剂还可不同程度地降低其内应力、固化收缩率,提高低温性能。

常用的增韧剂有聚酰胺树脂、合成橡胶、缩醛树脂、聚砜树脂等。

3)稀释剂稀释剂又称溶剂,主要作用是降低胶粘剂粘度,增加胶粘剂的浸润能力,改善工艺性能。有的能降低胶粘剂的活性,从而延长使用期。但加入量过多,会降低胶粘剂的胶接强度、耐热性、耐介质性能。常用的稀释剂有丙酮、漆料等多种与粘料相容的溶剂。
4)填料填料一般在胶黏剂中不发生化学反应,使用填料可以提高胶接接头的强度、抗冲击韧性、耐磨性、耐老化性、硬度、最高使用温度和耐热性,降低线膨胀系数、固化收缩率和成本等。常用的填料有氧化铜、氧化镁、银粉、瓷粉、云母粉、石棉粉、滑石粉等。5)改性剂改性剂是为了改善胶黏剂的某一方面性能,以满足特殊要求而加入的一些组分,如为增加胶接强度,可加入偶联剂,还可以加入防腐剂、防霉剂、阻燃剂和稳定剂等。

胶粘剂的分类

(一)、按成分来分:

胶粘剂种类很多,比较普遍的有:脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、聚丙烯酸树脂胶粘剂,聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂、环氧树脂胶粘剂、合成胶粘剂等等。

1、有机硅胶粘剂

是一种密封胶粘剂,具有耐寒、耐热、耐老化、防水、防潮、伸缩疲劳强度高、永久变形小、无毒等特点。近年来,此类胶粘剂在国内发展迅速,但目前我国有机硅胶粘剂的原料部分依靠进口。

2、聚氨酯胶粘剂

能粘接多种材料,粘接后在低温或超低温时仍能保持材料理化性质,主要应用于制鞋、包装、汽车、磁性记录材料等领域。

3、聚丙烯酸树脂

主要用于生产压敏胶粘剂,也用于纺织和建筑领域。

建筑用胶粘剂:主要用于建筑工程装饰、密封或结构之间的粘接。

4、 热熔胶粘剂

根据原料不同,可分为EVA热熔胶、聚酰胺热熔胶、聚酯热熔胶、聚烯烃热熔胶等。目前国内主要生产和使用的是EVA热熔胶。聚烯烃系列胶粘剂主要原料是乙烯系列、SBS、SIS共聚体。

5、环氧树脂胶粘剂

可对金属与大多数非金属材料之间进行粘接,广泛用于建筑、汽车、电子、电器及日常家庭用品方面

6、脲醛树脂、酚醛、三聚氰胺-甲醛胶粘剂

主要用于木材加工行业,使用后的甲醛释放量高于国际标准。

木材加工用胶粘剂:用于中密度纤维板、石膏板、胶合板和刨花板等

7、合成胶粘剂

主要用于木材加工、建筑、装饰、汽车、制鞋、包装、纺织、电子、印刷装订等领域。目前,我国每年进口合成胶粘剂近20万吨,品种包括热熔胶粘剂、有机硅密封胶粘剂、聚丙烯酸胶粘剂、聚氨酯胶粘剂、汽车用聚氯乙烯可塑胶粘剂等。同时,每年出口合成胶粘剂约2万吨,主要是聚醋酸乙烯、聚乙烯酸缩甲醛及压敏胶粘剂。

(二)、按用途来分:

1、密封胶粘剂

主要用于门、窗及装配式房屋预制件的连接处。高档密封胶粘剂为有机硅及聚氨酯胶粘剂,中档的为氯丁橡胶类胶粘剂、聚丙烯酸等。在我国,建筑用胶粘剂市场上,有机硅胶粘剂、聚氨酯密封胶粘剂应是今后发展的方向,目前其占据建筑密封胶粘剂的销售量为30%左右。

2、建筑结构用胶粘剂

主要用于结构单元之间的联接。如钢筋混凝土结构外部修补,金属补强固定以及建筑现场施工,一般考虑采用环氧树脂系列胶粘剂。

3、汽车用胶粘剂

分为4种,即车体用、车内装饰用、挡风玻璃用以及车体底盘用胶粘剂。

目前我国汽车用胶粘剂年消耗量约为4万吨,其中使用量最大的是聚氯乙烯可塑胶粘剂、氯丁橡胶胶粘剂及沥青系列胶粘剂。

4、包装用胶粘剂

主要是用于制作压敏胶带与压敏标签,对纸、塑料、金属等包装材料表面进行粘合。纸的包装材料用胶粘剂为聚醋酸乙烯乳液。塑料与金属包装材料用胶粘剂为聚丙烯酸乳液、VAE乳液、聚氨酯胶粘剂及氰基丙烯酸酯胶粘剂。

5、电子用胶粘剂

消耗量较少,目前每年不到1万吨,大部分用于集成电路电子产品,现主要用环氧树脂、不饱和聚酯树脂、有机硅胶粘剂。用于5微米厚电子元件的封端胶粘剂我们可以自己供给,但3微米厚电子元件用胶粘剂需从国外进口。

6、制鞋用胶粘剂

年消费量约为12.5万吨,其中氯丁橡胶类胶粘剂需要11万吨,聚氨酯胶粘剂约1.5万吨。由于氯丁橡胶类胶粘剂需用苯类作溶剂,而苯类对人体有害,应限制发展,为满足制鞋业发展需求,采用聚氨酯系列胶粘剂将是方向。

(三)、按物理形态来分:

1、密封胶

1.1 按密封胶硫化方法分类

(1)湿空气硫化型密封胶

此类密封胶系列用空气中的水分进行硫化。它主要包括单组分的聚氨酯、硅橡胶和聚硫橡胶等。其聚合物基料中含有活性基团,能同空气中的水发生反应,形成交联键,使密封胶硫化成网状结构。

(2)化学硫化型密封胶

双组分的聚氨酯、硅橡胶、聚硫橡胶、氯丁橡胶和环氧树脂密封胶都属于这一类,一般在室温条件下完成硫化。某些单组分的氯磺化聚乙烯和氯丁橡胶密封胶以及聚氯乙烯溶胶糊状密封胶则须在加热条件下经化学反应完成硫化。

(3)热转变型密封胶

用增塑剂分散的聚氯乙烯树脂和含有沥青的橡胶并用的密封胶是两个不同类型的热转变体系。乙烯基树脂增塑体在室温下是液态悬浮体,通过加热转化为固体而硬化;而橡胶-沥青并用密封胶则为热熔性的。

(4)氧化硬化型密封胶

表面干燥的嵌逢或安装玻璃用密封胶主要以干性或半干性植物油或动物油为基料,这类油料可以是精制聚合的、吹制的或化学改性的。

(5)溶剂挥发凝固型密封胶

这是以溶剂挥发后无粘性高聚物为基料的密封胶。这一类密封胶主要有丁基橡胶、高分子量聚异丁烯、一定聚合程度的丙烯酸酯、氯磺化聚乙烯以及氯丁橡胶等密封胶。

1.2 按密封胶形态分类

(1)膏状密封胶

此类密封胶基本上用于静态接缝中,使用期一般为2年或2年以上。通常采用3种主体材料:油和树脂、聚丁烯、沥青。

(2)液态弹性体密封胶

此类密封胶包括经硫化可形成真正弹性状态的液体聚合物,它们具有承受重复的接缝变形能力。弹性体密封胶所使用的聚合物弹性体包括液体聚硫橡胶、巯端基聚丙烯醚、液体聚氨酯、室温硫化硅橡胶和低分子丁基橡胶等。该类密封胶通常配合成两个组分,使用时将两个组分混合。

(3)热熔密封胶

热熔密封胶又叫热施工型密封胶。指以弹性体同热塑性树脂掺合物为基料的密封胶。这类密封胶通常在加热(150~200℃)情况下经一定口型模型直接挤出到接缝中。热施工可改进密封胶对被粘基料的湿润能力,因此对大多数被粘基料具有良好的粘接力。一经放入适当位置,就冷却成型或成膜,成为收缩性很小的坚固的弹性体。热施工密封胶的主体材料主要是异丁烯类聚合物、三元乙丙橡胶和热塑性的苯乙烯嵌段共聚物。它们通常同热塑性树脂如EVA、EEA、聚乙烯、聚酰胺、聚酯等掺合。

(4)液体密封胶

该类密封胶主要用于机械接合面的密封,用以代替固体密封材料即固体垫圈以防止机械内部流体从接合面泄漏。该类密封胶通常以高分子材料例如橡胶、树脂等为主体材料,再配以填料及其它组分制成。液体密封胶通常分不干性粘着型、半干性粘弹性、干性附着型和干性可剥型等4类。根据具体使用部位及要求选择。

1.3 按密封胶施工后性能分类

(1)固化型密封胶

固化型密封胶可分成刚性密封胶和柔性密封胶两种类型:a)刚性密封胶硫化或凝固后形成坚硬的固体,很少具有弹性;此类密封胶有的品种既起密封作用又起胶接作用,其代表性密封胶是以环氧树脂、聚酯树脂、聚丙烯酸酯、聚酰胺和聚乙酸乙烯酯等树脂为基料的密封胶。b)柔性密封胶在硫化后保持柔软性。它们一般以橡胶弹性体为基料。柔性变化幅度大,硬度(邵尔A)在10~80范围内。这类密封胶中有些品种是纯橡胶,大多数具有良好胶粘剂的性能。

(2)非固化型密封胶

这类密封胶是软质凝固性的密封胶,施工之后仍保持不干性状态。通常为膏状,可用刮刀或刷子用到接缝中,可以配合出许多不同粘度和不同性能的密封胶。

2、按胶粘剂硬化方法分类

低温硬化代号为a;常温硬化代号为b;加温硬化代号为c;适合多种温度区域硬化代号为d;与水反应固化代号为e;厌氧固化代号为f;辐射(光、电子束、放射线)固化代号为g;热熔冷硬化代号为h;压敏粘接代号为i;混凝或凝聚代号为j,其他代号为k。

3、按胶粘剂被粘物分类

多类材料代号为A;木材代号为B;纸代号为C;天然纤维代号为D;合成纤维代号为E;聚烯烃纤维(不含E类)代号为F;金属及合金代号为G;难粘金属(金、银、铜等)代号为H;金属纤维代号为I,无机纤维代号为J;透明无机材料(玻璃、宝石等)代号为K;不透明无机材料代号为L;天然橡胶代号为M;合成橡胶代号为N;难粘橡胶(硅橡胶、氟橡胶、丁基橡胶)代号为O,硬质塑料代号为P,塑料薄膜代号为Q;皮革、合成革代号为R,泡沫塑料代号为S; 难粘塑料及薄膜(氟塑料、聚乙烯、聚丙烯等)代号为T;生物体组织骨骼及齿质材料代号为U;其他代号为V。

4、胶水状态

无溶剂液体代号为1;2有机溶剂液体代号为2;3水基液体代号为3,4膏状、糊状代号为4,5粉状、粒状、块状代号为5;6片状、膜状、网状、带状代号为6;7丝状、条状、棒状代号为7。

5、其它胶粘剂: (不常用到)

金属结构胶、聚合物结构胶、光敏密封结构胶、其它复合型结构胶

热固性高分子胶:环氧树脂胶、聚氨酯(PU)胶、氨基树脂胶、酚醛树脂胶、丙烯酸树脂胶、呋喃树脂胶、间笨二酚-甲醛树脂胶、二甲笨-甲醛树脂胶、不饱和聚酯胶、复合型树脂胶、聚酰亚胺胶、脲醛树脂胶、其它高分子胶

密封胶粘剂:室温硫化硅橡胶、环氧树脂密封胶、聚氨酯密封胶、不饱和聚酯类、丙烯酸酯类、密封腻子、氯丁橡胶类密封胶、弹性体密封胶、液体密封垫料、聚硫橡胶密封胶、其它密封胶

热熔胶:热熔胶条、胶粒、胶粉、EVA热熔胶、橡胶热熔胶、聚丙烯、聚酯、聚酰胺、聚胺酯热熔胶、苯乙烯类热熔胶、新型热熔胶、聚乙烯及乙烯共聚物热熔胶、其他热熔胶

水基胶粘剂:丙烯酸乳液、醋酸乙烯基乳液、聚乙烯醇缩醛胶、乳液胶、其它水基胶

压敏胶(不干胶):胶水、胶粘带、无溶剂压敏胶、溶剂压敏胶、固化压敏胶、橡胶压敏胶、丙烯酸酯压敏胶、其它压敏胶

溶剂型胶:树脂溶液胶、橡胶溶液胶、其它溶剂胶

无机胶粘剂:热熔无机胶、自然干无机胶、化学反应无机胶、水硬无机胶、其它无机胶

热塑性高分子胶粘剂:固体高分子胶、溶液高分子胶、乳液高分子胶、单体高分子胶、其它热塑性高分子胶

天然胶粘剂:蛋白质胶、碳水化合物胶粘剂、其他天然胶

橡胶粘合剂:硅橡胶粘合剂、氯丁橡胶粘合剂、丁腈橡胶粘合剂、改性天然橡胶粘合剂、氯磺化聚乙烯粘合剂、聚硫橡胶粘合剂羧基橡胶粘合剂、聚异丁烯、丁基橡胶粘合剂、其它橡胶粘合剂

耐高温胶:有机硅胶、无机胶、高温模具树脂胶、金属高温粘合剂、其它耐高温胶

聚合物胶粘剂:丁腈聚合物胶、聚硫橡胶粘合剂、聚氯乙烯胶粘剂、聚丁二烯胶、过氯乙烯胶粘剂、其它聚合物胶

修补剂:金属修补剂、高温修补剂、紧急修补剂、耐磨修补剂、耐腐蚀修补剂、塑胶修补剂、其它修补剂

医用胶、纸品用胶、导磁胶、防磁胶、防火胶、防淬火胶、防淬裂胶、动物胶、植物胶、矿物胶、食品级胶粘剂、其它胶水。

喇叭胶粘产品(胶粘剂)の解决方案

喇叭の介绍

(一)、喇叭概述

喇叭分为几种不同的乐器,一种管乐器,上细下粗,多用铜制成。另一种是现代的电声元件,作用是将电信号转换为声音,也叫扬声器。还可用来形容替人鼓吹、宣传的人。我们常说的喇叭一般是电声元件中的喇叭,本词条主要介绍电声元件中的喇叭。管乐器喇叭请查俗称,唢呐,号筒,号子。

1877年,德国西门子公司的Erenst Verner就根据佛莱明左手定律,获得动圈式喇叭的专利。1898年,英国Oliver Lodge爵士进一步依照电话传声筒的原理发明了锥盆喇叭,与我们所熟悉的现代喇叭十分类似,Lodge爵士称为「咆哮的电话」。不过这个发明却无法运用,因为直到1906年Lee De Forest才发明了三极真空管,而制成可用的扩大机又是好几年以后的事,所以锥盆喇叭要到1930年代才逐渐普及起来。另一个原因是1921年以电气方式录制的新唱片问世了,它比传统机械式刻制的唱片有更好的动态范围(最大到30dB),使得人们不得不设法改良喇叭特性以为配合。1923年,贝尔实验室决定要发展完善的音乐再生系统,包括新式的唱机与喇叭,立体声录音与MC唱头、立体声刻片方式等,就在这波行动中被发明出来。研发喇叭的重责大任,落在CW Rice与EW Kellogg两位工程师身上。他们所使用的设备都是当时人前所未见的,包括一台200瓦的真空管扩大机、许多贝尔实验室自己完成的录音,以历年来贝尔实验室发展出来的各种喇叭 - 像是Lodge的锥盆喇叭雏形、用振膜瓣控制压缩气流的压缩空气喇叭、电晕放电式喇叭(今天叫电离子驱动器),以及静电喇叭。

(二)、喇叭的发声原理

喇叭其实是一种电能转换成声音的一种转换设备,当不同的电子能量传至线圈时,线圈产生一种能量与磁铁的磁场互动,这种互动造成纸盘振动,因为电子能量随时变化,喇叭的线圈会往前或往后运动,因此喇叭的纸盘就会跟着运动,这此动作使空气的疏密程度产生变化而产生声音。

(三)、喇叭的发声方式

动圈式

基本原理来自佛莱明左手定律,把一条有电流的导线与磁力线垂直的放进磁铁南北极间,导线就会受磁力线与电流两者的互相作用而移动,在把一片振膜依附在这根道线上,随著电流变化振膜就产生前后的运动。目前百分之九十以上的锥盆单体都是动圈式的设计。

电磁式

在一个U型的磁铁的中间架设可移动斩铁片(电枢),当电流流经线圈时电枢会受磁化与磁铁产生吸斥现象,并同时带动振膜运动。这种设计成本低廉但效果不佳,所以多用在电话筒与小型耳机上。

电感式

与电磁式原理相近,不过电枢加倍,而磁铁上的两个音圈并不对称,当讯号电流通过时两个电枢为了不同的磁通量会互相推挤而运动。与电磁是不同处是电感是可以再生较低的频率,不过效率却非常的低。

静电式

基本原理是库伦(Coulomb)定律,通常是以塑胶质的膜片加上铝等电感性材料真空汽化处理,两个膜片面对面摆放,当其中一片加上正电流高压时另一片就会感应出小电流,藉由彼此互相的吸引排斥作用推动空气就能发出声音。静电单体由于质量轻且振动分散小,所以很容易得到冰凉的高频,对低频动力有未逮,而且它的效率不高,使用直流电原又容易聚集灰尘。目前如Martin-Logan等厂商已成功的发展出静电与动圈混合式喇叭,解决了静电体低音不足的问题,在耳机上静电式的运用也很广泛。

平面式

最早由日本SONY开发出来的设计,音圈设计仍是动圈式为主题,不过将锥盆振膜改成蜂巢结构的平面振膜,因为少人空洞效应,特性较佳,但效率也偏低。

丝带式

没有传统的音圈设计,振膜是以非常薄的金属制成,电流直接流进道体使其振动发音。由于它的振膜就是音圈,所以质量非常轻,瞬态响应极佳,高频响应也很好。不过丝带式喇叭的效率和低阻抗对扩大机一直是很大的挑战,Apogee可为代表。另一种方式是有音圈的,但把音圈直接印刷在塑胶薄片上,这样可以解决部分低阻抗的问题,Magnepang此类设计的佼佼者。

号角式

振膜推动位于号筒底部的空气而工作,因为声音传送时未被扩散所以效率非常高,但由于号角的形状与长度都会影响音色,要重播低频也不太容易,现在大多用在巨型PA系统或高音单体上,美国Klipsch就是老字号的号角喇叭生产商。

其他信息

还有海耳博士在一九七三年发展出来的丝带式改良设计,称为海耳喇叭,理论上非常优秀,台湾使用者却很稀少。压电式是利用钛酸等压电材料,加上电压使其伸展或收缩而发音的设计,Pioneer曾以高聚合体改良压电式设计,用在他们的高音单体上。离子喇叭(Ion)是利用高压放电使空气成为带电的质止,施以交流电压后这些游离的带电分子就会因振动而发声,目前只能用在高频以上的单体。飞利浦也曾发展主动回授式喇叭(MFB),在喇叭内装有主动式回授线路,可以大幅降低失真。

(四)、喇叭的摆位及尺寸大小

耳平高音单元

喇叭即扬声器或音箱(国内用词),人们大都将之概括地分成两大类别。一是座地式,一是书架式,但无论书架或 座地的,摆位的方法都差别不大。首先,书架喇叭要『坐脚架』才靓声,这个实属必然,但也有些座地喇叭需要坐矮架;例如B&W的801及802等便 是。至于喇叭的高度,不管需要『坐架』与否,一般而言足以聆听者坐着时耳平高音为准。然而,这不仅是喇叭的问题,座椅的高度亦需配合。举例说:若一款二路 二单元喇叭指定要辅以27"高脚架,使用后其高音水平高度达37"的话,如阁下聆听时所用的座椅令你坐下时耳朵的水平高度高于或低于37",那便会影响到 正常效果,这会令到高中低频失却平衡。而对于初哥们来说,最显然易见的弊处则在于;若高音单元低过耳平,音场整体会变得低矮。若高于耳平,中低音与低音会 遮盖高音,形成低音过多而高音不足,或会有音场较高的错觉,但结像与定位会因低音对高音的遮盖效应,变得不自然。

然而,以上的并非金科玉律,仍 有许多非一般例子要视乎个别喇叭的设计来设定,好像Martin Logan、Magnepan等屏风喇叭,又或Bose的直接/反射技术喇叭,便不能套用上述的高度设定准则。此外,某些巨型座地大喇叭将高音单元放得高 高在上,例如Wilson Audio的Grand Slamm,又或像Dvnaudio Consequence将高音单元放在贴近地面者,便需根据设计者的指示下,以一个较远的『冲程』听音距离,才能合成出平衡的全频频率响应。所以,无论要 设定什么类型的喇叭都要先参阅说明书,看看有没有厂方建议的高度指引实属必须程序。

喇叭放第一个1/3位,聆听椅放在第二个1/3位

当完成了高度设定指引的要求后,接着就要处理左/右声道两喇叭之间,喇叭与聆听位之间,以及喇叭跟喇叭后墙与侧墙等之距离。

传统的说法,无 论要在一个新地方重新设定一对喇叭,抑或换了一对新喇叭,第一步;应将两喇叭放在聆听间长度的三分一之上。以本刊25尺长的大Hi-Fi房为例,喇叭要距 离喇叭的背墙8'4"(面板起计)。其次,左/右声道两喇叭的距离,以面板中轴线作准,至少6尺,这是有效呈现出一个立体音场的最短距离。太过接近的话, 会弄至最简单的左/中/右定位效果也变得难以分辨。此外,两喇叭的面板应完全平行后墙,并各与两侧墙形成90。(直角)及离墙数尺。至于聆听位,则应设定 在另一个三分一之上,即喇叭与聆听位就像两个将聆听间长度划分成三等分的分界点。

上述的传统手法,纯粹就着如本刊那两 间长方形的『理想型』Hi-Fi房,以及传统式样的喇叭而论。若遇上香港常见的不规则钻石形客厅,又或总面积百多尺的大细边客饭厅,又只能用半边来玩 Hi。Fi的情况,还有若使用NHT类面板向内侧倾斜喇叭及特别要靠近后墙才靓声的Naim Audio喇叭等,如以刚才的传统手法,根本不能得到应有的效果。因此以上及继续下来要为初哥们提供的指引,同样不应以金科玉律视之,只要就着情况做到尽 量接近便是!

基本上,左右两喇叭应与后墙平行,即左右两声道喇叭与喇叭背墙的距离完全相同,而左右两声道喇叭亦应跟聆听位有着相同的距离,这 样才可确保左右两喇叭发出的直接声同一时间到达聆听位,所以左右喇叭与聆听位理应构成一等边或等腰三角形。若是等腰三角形,则两喇叭一边作为底边跟聆听 位,以构成一锐角三角形为佳。若呈钝角三角型的话,即一是聆听点与两喇叭的距离太接近,又或两喇叭之间的距离太远、太宽,这两种情况,都会很容易弄至音场 中央结像奇大。例如一独唱者的口形,横跨左右喇叭,更只能有极左及极右两定位,此之为大耳筒效应!就像透过耳筒聆听两声道立体声重播般,只有在头颅中心的 一把人声,以及极左极右的音乐声,完全谈不上三度空间舞台感。所以务必先搞妥这个平行于喇叭背墙前的三角关系,否则难有正常靓声。

调校 toe-in角度

搞妥三角关系后,然后要处理的便是Toe-in问题。设定喇叭之初,应先作平摆。即不(*Toe-in或 Toe-out),这个应是不变的做法。继而找些有一把人声肯定在中央的录音就好像近期大热的“Voices”金碟,试试Track 2,听听Rebecca的声音能否在中央结像,若不,则有两个可能性,一是两喇叭的距离太宽,那便先把喇叭向中央栘近。但,若然两喇叭的距离不足六尺,这 样则会是Toe-in角度的问题,我们可将两喇叭逐少逐少向中央Toe-in,直至可营造出一个明显的中央结像为止。同时间我们要留意音场两侧的乐器声或 其他声音,会否缩在两喇叭之间,甚至缩成一团,若出现这情况,则表示Toe-in得太多,令音场过份收窄,故此我们要多用两三个不同类形的录音作准,最终 要做到音场左、中、右三部的能量尽量平均分布,若同时间音场能远远撑出两外侧,当然更好!*(Toe-in者,即两喇叭在差不多原地上向内侧转动,令前障 板更面向两喇叭之间的中线,而Toe-out则相反。)

除了Toe-in/out角度外,两喇叭的距离亦同样对音场左、中、右的能量平均分 布,有着根本性的影响。假若环境容许两左右两声道喇叭的距离逾6尺,我们应试试同时间将两喇叭向外侧等距地移出,看看能否拉宽音场而不影响能量的平均分 布。情况许可的话,可大胆些以尺计移出,拉到音场中央出现缺口才停下来。继而再转过来将两喇叭拉近,直至音场再次接台,及至平均。如是者拉宽收窄不断反覆 试验,并将每次来回的幅度收窄,直至找出一个音塲最宽而能量又平衡的距离来。事实上,许多发烧友都会为求音场更宽而将左右喇叭拉得太宽,引至音场中央断裂 而不自知,因此以上来回地拉宽修窄的程序极为重要。

还有一事得注意,就是两喇叭距离的改变跟Toe-in/out角度有着互相牵动的关 系,因此搞过任何一办,另一办很大机会需要再行调节,许多时更要来来回回多遍。没法子,要靓声便不能偷懒!

喇叭与后侧墙关系

接着要讲讲喇叭与喇叭后墙的关系。或许很多初哥都会听闻过,喇叭摆得越贴近后墙,低音越丰满,越强劲!的确,越近则越丰越强劲,但初哥们切勿因追求强劲 而忽略平衡度,盲目地将喇叭推得太贴近后墙,这会使到低频过份凸出,令高频被盖过,失却平衡度之余,那些低音还会变成只有量的低音。因此,市场除少数如Naim Audio指定要贴后墙摆外,绝大多数喇叭都应当与后墙保持一定的距离。至于这距离是多少,没有一定准则,要根据不同喇叭跟不同环境的配合而定,如环境许 可的话,可由背板离后墙四尺作起点,但以香港现实的居住环境来说,由近至两尺起也得接受。然后耐心点重覆将它们移前或拉后,直至找出音色最平衡的一点。当 然,若同时能取得立体感强的深度及层次感,诚然好事!

最后,还要讲的是喇叭与两侧墙的关系。这个很难一概而论,只要不过于贴近便是,至少相距 两尺吧!若有五六尺当然更佳。此外,香港常见的以单边客饭厅玩Hi-Fi的情况,使得一边喇叭的两三尺外便是墙壁之同时,另一边却要延展至八、九尺的饭厅 才到侧墙。这也得妥协,惟有将离墙较远的那边喇叭,试试以较大的Toe-in角度去取得多一点直接声来相就,看看能否调校出比较平衡的效果。

喇叭的尺寸

测量喇叭(扬声器,行话“单元”)按有效振动半径计算尺寸。即按纸盆的外沿未压入固定胶圈的直径算,习惯上对喇叭的口径用英 寸。

一般人用的尺子多是公制,测量纸盆直径后多少厘米,除以2.54(2.54厘米等于一英寸),就是英寸。

4寸喇叭:螺丝孔 对角距离是11.5厘米,相邻孔 距8厘米,喇叭口径是10厘米;

5寸喇叭:螺丝孔对角距离是13.5厘米,相邻孔距9.5 厘米,口径13厘米;

6.5寸喇叭:螺丝孔对角距离是15.5厘米,相邻孔距11厘米,口 径16.5厘米;

4X6寸相邻螺丝孔 距离是12.3厘米和7.3厘米;

6X9寸相邻螺丝孔距离分 别是16.5厘米和11厘米.

喇叭SPK胶粘技术解决方案

(一)、方案一

6d26614c-aeb8-11ec-82f6-dac502259ad0.png

(二)、方案二

6d37485e-aeb8-11ec-82f6-dac502259ad0.png

(三)、方案三

6d7d92be-aeb8-11ec-82f6-dac502259ad0.png

6d9da130-aeb8-11ec-82f6-dac502259ad0.png

6dcb6d72-aeb8-11ec-82f6-dac502259ad0.png

6de1c928-aeb8-11ec-82f6-dac502259ad0.png

(四)、喇叭材料解决方案

6e01c2d2-aeb8-11ec-82f6-dac502259ad0.png

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 胶粘剂
    +关注

    关注

    1

    文章

    89

    浏览量

    11067
收藏 人收藏

    评论

    相关推荐

    电子产品结构与导热材料解决方案

    解决方案,旨在帮助电子产品设计师们更好地解决热设计难题。一、导热硅胶片在电源中的应用在电源适配器中,PCB板上的MOS管、变压器等电子元器件是主要的发热源。为了提高电源内部的散热效率,傲琪电子推出了导热
    发表于 11-11 16:25

    请问tlv320dac3100设成喇叭输出时,应该怎样配置寄存器呢?

    请问tlv320dac3100设成喇叭输出时,应该怎样配置寄存器呢? 我们按照datasheet中的example配置,spk有方波输出,但是没有音频数据,只有pop声。请问还需要修改哪些参数呢? 我们的音频源是HDMI,使用I2S接口对接。谢谢支持。
    发表于 10-15 08:04

    请问TLV320DAC3100喇叭怎么调高音量?

    如题,我修改了page1,0x26,LeftAnalogVolumeto SPK,将其值设置为0x80,page1, 0x2A,Class-DSpeaker(SPK)Driver, 将其设置为0x1D,但是喇叭的声音还是比较小
    发表于 10-15 06:21

    tas2505的spk+/spk1输出为方波,使用tinyplay波形音频文件speaker无声音输出是怎么回事?

    /tas2505.c平台采用高通QCS610,测量芯片I2S四路信号都有,但Spk+/Spk-输出波形为方波,使用tinyplay播放wav文件也没有声音输出。 I2C寄存器设置采用 slau472.pdf Page 49 4.0.7 Example
    发表于 10-12 06:27

    大研智造 激光焊锡机技术:音圈喇叭制造的精密焊接解决方案

    本文深入探讨了激光焊锡技术在音圈喇叭制造中的应用,这一技术以其高精度、低热影响和高效率的特点,为提升喇叭的音质和性能提供了创新的解决方案。文
    的头像 发表于 08-29 12:00 161次阅读
    大研智造 激光焊锡机<b class='flag-5'>技术</b>:音圈<b class='flag-5'>喇叭</b>制造的精密焊接<b class='flag-5'>解决方案</b>

    东软睿驰携多款领先技术产品解决方案亮相2024北京车展

    在主题为“新时代 新汽车”的2024北京车展上,东软睿驰携多款领先技术产品解决方案正式亮相,全面展示新一代智能汽车的高效创新、开放合作的落地成果。
    的头像 发表于 04-28 09:16 1042次阅读
    东软睿驰携多款领先<b class='flag-5'>技术</b><b class='flag-5'>产品</b>与<b class='flag-5'>解决方案</b>亮相2024北京车展

    Molex推出IoT PoE 功能网络互联解决方案产品介绍-赫联电子

    。   Molex 提供的网络互联照明产品只是 Molex 传感器解决方案套装中的一个组成部分,可以助力建筑师、设计人员及房屋的管理人员来利用 Molex 的网络互联解决方案,在最高的程度上对楼宇进行
    发表于 04-22 17:32

    机器视觉运动控制一体机在喇叭跟随点胶上的应用

    工艺,音圈是扬声器的重要部件,点胶质量直接影响扬声器的质量。在保质保量的喇叭点胶市场高需求下,传统的手工点胶或中小型半自动点胶机无法适应工厂灵活批量生产作业的需求。 传统点胶解决方案在扬声器行业中存在
    发表于 04-16 17:37

    智慧能源物联网解决方案产品介绍

    电子发烧友网站提供《智慧能源物联网解决方案产品介绍.pdf》资料免费下载
    发表于 04-08 15:42 1次下载

    声卡喊话IP喇叭,IP网络吸顶天花喇叭

    声卡喊话IP喇叭,IP网络吸顶天花喇叭 SV-7043VP是一款ip/sip网络吸顶喇叭,具有10/100M以太网接口,从网络接口接收网络的音频数据后播放。本网络吸顶喇叭可以与其他广播
    的头像 发表于 03-14 14:20 756次阅读
    声卡喊话IP<b class='flag-5'>喇叭</b>,IP网络吸顶天花<b class='flag-5'>喇叭</b>

    智慧用电产品解决方案介绍

    智慧用电产品解决方案介绍
    的头像 发表于 03-05 08:08 333次阅读
    智慧用电<b class='flag-5'>产品</b><b class='flag-5'>解决方案</b>介绍

    安科瑞消防产品解决方案

    安科瑞消防产品解决方案
    的头像 发表于 03-05 08:07 326次阅读
    安科瑞消防<b class='flag-5'>产品</b><b class='flag-5'>解决方案</b>

    低压保护测控产品解决方案

    低压保护测控产品解决方案
    的头像 发表于 01-26 08:08 352次阅读
    低压保护测控<b class='flag-5'>产品</b><b class='flag-5'>解决方案</b>

    机器视觉运动控制一体机在喇叭跟随点胶上的应用

    颠覆传统工艺:全景解读正运动皮带线喇叭跟随视觉点胶解决方案
    的头像 发表于 12-21 10:13 586次阅读
    机器视觉运动控制一体机在<b class='flag-5'>喇叭</b>跟随点胶上的应用

    英飞凌半导体与系统解决方案产品推荐

    英飞凌(Infineon)作为世界半导体产业发展的先行者和引领者,一直致力于打造先进的产品和全面的系统解决方案,为现代社会的三大科技挑战领域——高能效、移动性和安全性提供半导体和系统解决方案,推动构建低碳化、数字化的产业生态。
    的头像 发表于 12-20 14:13 765次阅读