0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

半导体芯片封装胶水的常见检测项目

向欣电子 2022-10-10 15:58 次阅读

关键词:半导体芯片,胶粘剂(胶水、粘接剂),胶接工艺,胶粘技术

引言:胶接是通过具有黏附能力的物质,把同种或不同种材料牢固地连接在起的方法。具有黏附能力的物质称为胶粘剂或黏合剂,被胶接的物体称为被粘物,胶粘剂和被黏物构成的组件称为胶接接头。其主要优点是操作简单、生产率高;工艺灵活、快速、简便;接头可靠、牢固、美观产品结构和加工工艺简单;省材、省力、成本低、变形小。容易实现修旧利废接技术可以有效地应用于不同种类的金属或非金属之间的联接等。胶水的固化方式,一般有以下几种:1、常温固化;2、加热固化;3、UV固化;4、复合型固化。

半导体封装

定义

半导体封装是指将通过测试的晶圆按照产品型号及功能需求加工得到独立芯片的过程。封装过程为:来自晶圆前道工艺的晶圆通过划片工艺后被切割为小的晶片(Die),然后将切割好的晶片用胶水贴装到相应的基板(引线框架)架的小岛上,再利用超细的金属(金锡铜铝)导线或者导电性树脂将晶片的接合焊盘(Bond Pad)连接到基板的相应引脚(Lead),并构成所要求的电路;然后再对独立的晶片用塑料外壳加以封装保护,塑封之后还要进行一系列操作,封装完成后进行成品测试,通常经过入检Incoming、测试Test和包装Packing等工序,最后入库出货。半导体制造的工艺过程由晶圆制造(Wafer Fabr ication)、晶圆测试(wafer Probe/Sorting)、芯片封装(Assemble)、测试(Test)以及后期的成品(Finish Goods)入库所组成。半导体器件制作工艺分为前道和后道工序,晶圆制造和测试被称为前道(Front End)工序,而芯片的封装、测试及成品入库则被称为后道(Back End)工序,前道和后道一般在不同的工厂分开处理。前道工序是从整块硅圆片入手经多次重复的制膜、氧化、扩散,包括照相制版和光刻等工序,制成三极管、集成电路等半导体元件及电极等,开发材料的电子功能,以实现所要求的元器件特性。后道工序是从由硅圆片分切好的一个一个的芯片入手,进行装片、固定、键合联接、塑料灌封、引出接线端子、按印检查等工序,完成作为器件、部件的封装体,以确保元器件的可靠性,并便于与外电路联接。

半导体制造工艺和流程

晶圆制造:晶圆制造主要是在晶圆上制作电路与镶嵌电子元件(如电晶体、电容、逻辑闸等),是所需技术最复杂且资金投入最多的过程。以微处理器为例,其所需处理步骤可达数百道,而且所需加工机器先进且昂贵。虽然详细的处理程序是随着产品种类和使用技术的变化而不断变化,但其基本处理步骤通常是晶圆先经过适当的清洗之后,接着进行氧化及沉积处理,最后进行微影、蚀刻及离子植入等反复步骤,最终完成晶圆上电路的加工与制作。晶圆测试:晶圆经过划片工艺后,表面上会形成一道一道小格,每个小格就是一个晶片或晶粒(Die),即一个独立的集成电路。在一般情况下,一个晶圆上制作的晶片具有相同的规格,但是也有可能在同一个晶圆上制作规格等级不同的晶片。晶圆测试要完成两个工作:一是对每一个晶片进行验收测试,通过针测仪器(Probe)检测每个晶片是否合格,不合格的晶片会被标上记号,以便在切割晶圆的时候将不合格晶片筛选出来;二是对每个晶片进行电气特性(如功率等)检测和分组,并作相应的区分标记。芯片封装:首先,将切割好的晶片用胶水贴装到框架衬垫(Substrate)上;其次,利用超细的金属导线或者导电性树脂将晶片的接合焊盘连接到框架衬垫的引脚,使晶片与外部电路相连,构成特定规格的集成电路芯片(Bin);最后对独立的芯片用塑料外壳加以封装保护,以保护芯片元件免受外力损坏。塑封之后,还要进行一系列操作,如后固化(Post Mold Cure)、切筋(Trim)、成型(Form)和电镀(Plating)等工艺。芯片测试:封装好的芯片成功经过烤机(Burn In)后需要进行深度测试,测试包括初始测试(Initial Test)和最后测试(Final Test)。初始测试就是把封装好的芯片放在各种环境下测试其电气特性(如运行速度、功耗、频率等),挑选出失效的芯片,把正常工作的芯片按照电气特性分为不同的级别。最后测试是对初始测试后的芯片进行级别之间的转换等操作。成品入库:测试好的芯片经过半成品仓库后进入最后的终加工,包括激光印字、出厂质检、成品封装等,最后入库。

封装的功能

封装最基本的功能是保护电路芯片免受周围环境的影响(包括物理、化学的影响)。所以,在最初的微电子封装中,是用金属罐(Metal Can)作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。一般来说顾客所需要的并不是芯片,而是由芯片和PKG构成的半导体器件。PKG是半导体器件的外缘,是芯片与实装基板间的界面。因此无论PKG的形式如何,封装最主要的功能应是芯片电气特性的保持功能。通常认为,半导体封装主要有电气特性的保持、芯片保护、应力缓和及尺寸调整配合四大功能,它的作用是实现和保持从集成电路器件到系统之间的连接,包括电学连接和物理连接。目前,集成电路芯片的I/0线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接。芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重,由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。芯片电气特性的保持功能,通过PKG的进步,满足不断发展的高性能、小型化、高频化等方面的要求,确保其功能性。芯片保护功能,PKG的芯片保护功能很直观,保护芯片表面以及连接引线等,使在电气或物理等方面相当柔嫩的芯片免受外力损害及外部环境的影响。保证可靠性。应力缓和功能,由于热等外部环境的影响或者芯片自身发热等都会产生应力,PKG缓解应力,防止发生损坏失效,保证可靠性。尺寸调整配合(间距变化)功能,由芯片的微细引线间距调整到实装基板的尺寸间距,从而便于实装操作。例如,从亚微米(目前已小于 0.13μm)为特征尺寸的芯片到以10μm为单位的芯片电极凸点,再到以100μm为单位的外部引线端子,最后到以mm为单位的实装基板,都是通过PKG来实现的。在这里PKG起着由小到大、由难到易、由复杂到简单的变换作用。从而可使操作费用及资材费用降低,而且提高工作效率和可靠性。保证实用性或通用性。

微电子封装的三个层次

09617ff0-4861-11ed-b116-dac502259ad0.png

一级封装:一级封装是用封装外壳将芯片封装成单芯片组件(SCM)和多芯片组件(MCM)。半导体芯片和封装体的电学互联,通常有三种实现途径,引线键合(WB)、载带自动焊(TAB)和倒装焊(Flip Chip),一级封装的可以使用金属、陶瓷,塑料(聚合物)等包封材料。封装工艺设计需要考虑到单芯片或者多芯片之间的布线,与PCB节距的匹配,封装体的散热情况等。二级封装:二级封装是印刷电路板的封装和装配,将一级封装的元器件组装到印刷电路板(PCB)上,包括板上封装单元和器件的互连,包括阻抗的控制、连线的精细程度和低介电常数材料的应用。除了特别要求外,这一级封装一般不单独加封装体,具体产品如计算机的显卡,PCI数据采集卡等都属于这一级封装。如果这一级封装能实现某些完整的功能,需要将其安装在同一的壳体中,例如Ni公司USB数据采集卡,创新的外置USB声卡等。三级封装:三级封装是将二级封装的组件查到同一块母板上,也就是关于插件接口、主板及组件的互连。这一级封装可以实现密度更高,功能更全组装,通常是一种立体组装技术。

097396a4-4861-11ed-b116-dac502259ad0.png

例如一台PC的主机,一个NI公司的PXI数据采集系统,汽车的GPS导航仪,这些都属于三级微电子封装的产品。微电子封装工程和电子基板、微电子封装是一个复杂的系统工程,类型多、范围广,涉及各种各样材料和工艺。可按几何维数将电子封装分解为简单的“点、线、面、体、块、板”等。电子基板是半导体芯片封装的载体,搭载电子元器件的支撑,构成电子电路的基盘,按其结构可分为普通基板、印制电路板、模块基板等几大类。其中PCB在原有双面板、多层板的基础上,近年来又出现积层(build-up)多层板。模块基板是指新兴发展起来的可以搭载在PCB之上,以BGA、CSP、TAB、MCM为代表的封装基板(Package Substrate,简称PKG基板)。小到芯片、电子元器件,大到电路系统、电子设备整机,都离不开电子基板。近年来在电子基板中,高密度多层基板所占比例越来越大。微电子封装所涉及的各个方面几乎都是在基板上进行或与基板相关。在电子封装工程所涉及的四大基础技术,即薄厚膜技术、微互连技术、基板技术、封接与封装技术中,基板技术处于关键与核心地位。随着新型高密度封装形式的出现,电子封装的许多功能,如电气连接,物理保护,应力缓和,散热防潮,尺寸过渡,规格化、标准化等,正逐渐部分或全部的由封装基板来承担。微电子封装的范围涉及从半导体芯片到整机,在这些系统中,生产电子设备包括6个层次,也即装配的6个阶段。我们从电子封装工程的角度,按习惯一般称层次1为零级封装;层次2为一级封装;层次3为二级封装;层次4、5、6为三级封装。

电子封装工程的六个阶段

099d85ae-4861-11ed-b116-dac502259ad0.png

层次1(裸芯片):它是特指半导体集成电路元件(IC芯片)的封装,芯片由半导体厂商生产,分为两类,一类是系列标准芯片,另一类是针对系统用户特殊要求的专用芯片,即未加封装的裸芯片(电极的制作、引线的连接等均在硅片之上完成)。层次2(封装后的芯片即集成块):分为单芯片封装和多芯片封装两大类。前者是对单个裸芯片进行封装,后者是将多个裸芯片装载在多层基板(陶瓷或有机)上进行气密性封装构成MCM。层次3(板或卡):它是指构成板或卡的装配工序。将多个完成层次2的单芯片封装和MCM,实装在PCB板等多层基板上,基板周边设有插接端子,用于与母板及其它板或卡的电气连接。层次4(单元组件):将多个完成层次3的板或卡,通过其上的插接端子搭载在称为母板的大型PCB板上,构成单元组件。层次5(框架件):它是将多个单元构成(框)架,单元与单元之间用布线或电缆相连接。层次6(总装、整机或系统):它是将多个架并排,架与架之间由布线或电缆相连接,由此构成大型电子设备或电子系统。封装基板和封装分级:从硅圆片制作开始,微电子封装可分为0、1、2、3四个等级,涉及上述六个层次,封装基板(PKG基板或Substrate)技术现涉及1、2、3三个等级和2~5的四个层次。封装基板主要研究前3个级别的半导体封装(1、2、3级封装),0级封装暂与封装基板无关,因此封装基板一般是指用于1级2级封装的基板材料,母板(或载板)、刚挠结合板等用于三级封装。

胶水(胶粘剂)の紹介

胶粘剂的组成

现在使用的胶粘剂均是采用多种组分合成树脂胶粘剂,单一组分的胶粘剂已不能满足使用中的要求。合成胶粘剂由主剂和助剂组成,主剂又称为主料、基料或粘料;助剂有固化剂、稀释剂、增塑剂、填料、偶联剂、引发剂、增稠剂、防老剂、阻聚剂、稳定剂、络合剂、乳化剂等,根据要求与用途还可以包括阻燃剂、发泡剂、消泡剂、着色剂和防霉剂等成分。
1.主剂主剂是胶粘剂的主要成分,主导胶粘剂粘接性能,同时也是区别胶粘剂类别的重要标志。主剂一般由一种或两种,甚至三种高聚物构成,要求具有良好的粘附性和润湿性等。通常用的粘料有:
·天然高分子化合物如蛋白质、皮胶、鱼胶、松香、桃胶、骨胶等。2)合成高分子化合物①热固性树脂,如环氧树脂、酚醛树脂、聚氨酯树脂、脲醛树脂、有机硅树脂等。②热塑性树脂,如聚醋酸乙烯酯、聚乙烯醇及缩醛类树脂、聚苯乙烯等。③弹性材料,如丁腈胶、氯丁橡胶、聚硫橡胶等。④各种合成树脂、合成橡胶的混合体或接枝、镶嵌和共聚体等。

2.助剂为了满足特定的物理化学特性,加入的各种辅助组分称为助剂,例如:为了使主体粘料形成网型或体型结构,增加胶层内聚强度而加入固化剂(它们与主体粘料反应并产生交联作用);为了加速固化、降低反应温度而加入固化促进剂或催化剂;为了提高耐大气老化、热老化、电弧老化、臭氧老化等性能而加入防老剂;为了赋予胶粘剂某些特定性质、降低成本而加入填料;为降低胶层刚性、增加韧性而加入增韧剂;为了改善工艺性降低粘度、延长使用寿命加入稀释剂等。包括:1)固化剂:固化剂又称硬化剂,是促使黏结物质通过化学反应加快固化的组分,它是胶粘剂中最主要的配合材料。它的作用是直接或通过催化剂与主体聚合物进行反应,固化后把固化剂分子引进树脂中,使原来是热塑性的线型主体聚合物变成坚韧和坚硬的体形网状结构。固化剂的种类很多,不同的树脂、不同要求采用不同的固化剂。胶接的工艺性和其使用性能是由加人的固化剂的性能和数量来决定的。2)增韧剂:增韧剂的活性基团直接参与胶粘剂的固化反应,并进入到固化产物最终形成的一个大分子的链结构中。没有加入增韧剂的胶粘剂固化后,其性能较脆,易开裂,实用性差。加入增韧剂的胶接剂,均有较好的抗冲击强度和抗剥离性。不同的增韧剂还可不同程度地降低其内应力、固化收缩率,提高低温性能。常用的增韧剂有聚酰胺树脂、合成橡胶、缩醛树脂、聚砜树脂等。3)稀释剂:稀释剂又称溶剂,主要作用是降低胶粘剂粘度,增加胶粘剂的浸润能力,改善工艺性能。有的能降低胶粘剂的活性,从而延长使用期。但加入量过多,会降低胶粘剂的胶接强度、耐热性、耐介质性能。常用的稀释剂有丙酮、漆料等多种与粘料相容的溶剂。4)填料:填料一般在胶黏剂中不发生化学反应,使用填料可以提高胶接接头的强度、抗冲击韧性、耐磨性、耐老化性、硬度、最高使用温度和耐热性,降低线膨胀系数、固化收缩率和成本等。常用的填料有氧化铜、氧化镁、银粉、瓷粉、云母粉、石棉粉、滑石粉等。5)改性剂:改性剂是为了改善胶黏剂的某一方面性能,以满足特殊要求而加入的一些组分,如为增加胶接强度,可加入偶联剂,还可以加入防腐剂、防霉剂、阻燃剂和稳定剂等。

胶粘剂的分类

(一)、按成分来分:

胶粘剂种类很多,比较普遍的有:脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、聚丙烯酸树脂胶粘剂,聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂、环氧树脂胶粘剂、合成胶粘剂等等。

1、有机硅胶粘剂:是一种密封胶粘剂,具有耐寒、耐热、耐老化、防水、防潮、伸缩疲劳强度高、永久变形小、无毒等特点。近年来,此类胶粘剂在国内发展迅速,但目前我国有机硅胶粘剂的原料部分依靠进口。

2、聚氨酯胶粘剂:能粘接多种材料,粘接后在低温或超低温时仍能保持材料理化性质,主要应用于制鞋、包装、汽车、磁性记录材料等领域。

3、聚丙烯酸树脂:主要用于生产压敏胶粘剂,也用于纺织和建筑领域。

建筑用胶粘剂:主要用于建筑工程装饰、密封或结构之间的粘接。

4、 热熔胶粘剂:根据原料不同,可分为EVA热熔胶、聚酰胺热熔胶、聚酯热熔胶、聚烯烃热熔胶等。目前国内主要生产和使用的是EVA热熔胶。聚烯烃系列胶粘剂主要原料是乙烯系列、SBS、SIS共聚体。

5、环氧树脂胶粘剂:可对金属与大多数非金属材料之间进行粘接,广泛用于建筑、汽车、电子、电器及日常家庭用品方面

6、脲醛树脂、酚醛、三聚氰胺-甲醛胶粘剂:主要用于木材加工行业,使用后的甲醛释放量高于国际标准。木材加工用胶粘剂:用于中密度纤维板、石膏板、胶合板和刨花板等

7、合成胶粘剂:主要用于木材加工、建筑、装饰、汽车、制鞋、包装、纺织、电子、印刷装订等领域。目前,我国每年进口合成胶粘剂近20万吨,品种包括热熔胶粘剂、有机硅密封胶粘剂、聚丙烯酸胶粘剂、聚氨酯胶粘剂、汽车用聚氯乙烯可塑胶粘剂等。同时,每年出口合成胶粘剂约2万吨,主要是聚醋酸乙烯、聚乙烯酸缩甲醛及压敏胶粘剂。

(二)、按用途来分:

1、密封胶粘剂:主要用于门、窗及装配式房屋预制件的连接处。高档密封胶粘剂为有机硅及聚氨酯胶粘剂,中档的为氯丁橡胶类胶粘剂、聚丙烯酸等。建筑用胶粘剂市场上,有机硅胶粘剂、聚氨酯密封胶粘剂应是今后发展的方向,目前其占据建筑密封胶粘剂的销售量为30%左右。

2、建筑结构用胶粘剂:主要用于结构单元之间的联接。如钢筋混凝土结构外部修补,金属补强固定以及建筑现场施工,一般考虑采用环氧树脂系列胶粘剂。

3、汽车用胶粘剂:分为4种,即车体用、车内装饰用、挡风玻璃用以及车体底盘用胶粘剂。

目前我国汽车用胶粘剂年消耗量约为4万吨,其中使用量最大的是聚氯乙烯可塑胶粘剂、氯丁橡胶胶粘剂及沥青系列胶粘剂。

4、包装用胶粘剂:主要是用于制作压敏胶带与压敏标签,对纸、塑料、金属等包装材料表面进行粘合。纸的包装材料用胶粘剂为聚醋酸乙烯乳液。塑料与金属包装材料用胶粘剂为聚丙烯酸乳液、VAE乳液、聚氨酯胶粘剂及氰基丙烯酸酯胶粘剂。

5、电子用胶粘剂:消耗量较少,目前每年不到1万吨,大部分用于集成电路及电子产品,现主要用环氧树脂、不饱和聚酯树脂、有机硅胶粘剂。用于5微米厚电子元件的封端胶粘剂我们可以自己供给,但3微米厚电子元件用胶粘剂需从国外进口。

6、制鞋用胶粘剂:年消费量约为12.5万吨,其中氯丁橡胶类胶粘剂需要11万吨,聚氨酯胶粘剂约1.5万吨。由于氯丁橡胶类胶粘剂需用苯类作溶剂,而苯类对人体有害,应限制发展,为满足制鞋业发展需求,采用聚氨酯系列胶粘剂将是方向。

(三)、按物理形态来分:

1、密封胶 :1.1 按密封胶硫化方法分类

(1)湿空气硫化型密封胶 :此类密封胶系列用空气中的水分进行硫化。主要包括单组分的聚氨酯、硅橡胶和聚硫橡胶等。其聚合物基料中含有活性基团,能同空气中的水发生反应,形成交联键,使密封胶硫化成网状结构。(2)化学硫化型密封胶 :双组分的聚氨酯、硅橡胶、聚硫橡胶、氯丁橡胶和环氧树脂密封胶都属于这一类,一般在室温条件下完成硫化。某些单组分的氯磺化聚乙烯和氯丁橡胶密封胶以及聚氯乙烯溶胶糊状密封胶则须在加热条件下经化学反应完成硫化。(3)热转变型密封胶 :用增塑剂分散的聚氯乙烯树脂和含有沥青的橡胶并用的密封胶是两个不同类型的热转变体系。乙烯基树脂增塑体在室温下是液态悬浮体,通过加热转化为固体而硬化;而橡胶-沥青并用密封胶则为热熔性的。(4)氧化硬化型密封胶 :表面干燥的嵌逢或安装玻璃用密封胶主要以干性或半干性植物油或动物油为基料,这类油料可以是精制聚合的、吹制的或化学改性的。(5)溶剂挥发凝固型密封胶 :这是以溶剂挥发后无粘性高聚物为基料的密封胶。这一类密封胶主要有丁基橡胶、高分子量聚异丁烯、一定聚合程度的丙烯酸酯、氯磺化聚乙烯以及氯丁橡胶等密封胶。

1.2 按密封胶形态分类

(1)膏状密封胶 :此类密封胶基本上用于静态接缝中,使用期一般为2年或2年以上。通常采用3种主体材料:油和树脂、聚丁烯、沥青。(2)液态弹性体密封胶 : 此类密封胶包括经硫化可形成真正弹性状态的液体聚合物,它们具有承受重复的接缝变形能力。弹性体密封胶所使用的聚合物弹性体包括液体聚硫橡胶、巯端基聚丙烯醚、液体聚氨酯、室温硫化硅橡胶和低分子丁基橡胶等。该类密封胶通常配合成两个组分,使用时将两个组分混合。(3)热熔密封胶:热熔密封胶又叫热施工型密封胶。指以弹性体同热塑性树脂掺合物为基料的密封胶。这类密封胶通常在加热(150~200℃)情况下经一定口型模型直接挤出到接缝中。热施工可改进密封胶对被粘基料的湿润能力,因此对大多数被粘基料具有良好的粘接力。一经放入适当位置,就冷却成型或成膜,成为收缩性很小的坚固的弹性体。热施工密封胶的主体材料主要是异丁烯类聚合物、三元乙丙橡胶和热塑性的苯乙烯嵌段共聚物。它们通常同热塑性树脂如EVA、EEA、聚乙烯、聚酰胺、聚酯等掺合。(4)液体密封胶 :该类密封胶主要用于机械接合面的密封,用以代替固体密封材料即固体垫圈以防止机械内部流体从接合面泄漏。该类密封胶通常以高分子材料例如橡胶、树脂等为主体材料,再配以填料及其它组分制成。液体密封胶通常分不干性粘着型、半干性粘弹性、干性附着型和干性可剥型等4类。根据具体使用部位及要求选择。

0ab61ed8-4861-11ed-b116-dac502259ad0.png

1.3 按密封胶施工后性能分类

(1)固化型密封胶 :固化型密封胶可分成刚性密封胶和柔性密封胶两种类型:a)刚性密封胶硫化或凝固后形成坚硬的固体,很少具有弹性;此类密封胶有的品种既起密封作用又起胶接作用,其代表性密封胶是以环氧树脂、聚酯树脂、聚丙烯酸酯、聚酰胺和聚乙酸乙烯酯等树脂为基料的密封胶。b)柔性密封胶在硫化后保持柔软性。它们一般以橡胶弹性体为基料。柔性变化幅度大,硬度(邵尔A)在10~80范围内。这类密封胶品种是纯橡胶,大多数具有良好胶粘剂的性能。

(2)非固化型密封胶 :这类密封胶是软质凝固性的密封胶,施工之后仍保持不干性状态。通常为膏状,可用刮刀或刷子用到接缝中,可以配合出许多不同粘度和不同性能的密封胶。

2、按胶粘剂硬化方法分类 :低温硬化代号为a;常温硬化代号为b;加温硬化代号为c;适合多种温度区域硬化代号为d;与水反应固化代号为e;厌氧固化代号为f;辐射(光、电子束、放射线)固化代号为g;热熔冷硬化代号为h;压敏粘接代号为i;混凝或凝聚代号为j,其他代号为k。

3、按胶粘剂被粘物分类 :多类材料代号为A;木材代号为B;纸代号为C;天然纤维代号为D;合成纤维代号为E;聚烯烃纤维(不含E类)代号为F;金属及合金代号为G;难粘金属(金、银、铜等)代号为H;金属纤维代号为I,无机纤维代号为J;透明无机材料(玻璃、宝石等)代号为K;不透明无机材料代号为L;天然橡胶代号为M;合成橡胶代号为N;难粘橡胶(硅橡胶、氟橡胶、丁基橡胶)代号为O,硬质塑料代号为P,塑料薄膜代号为Q;皮革、合成革代号为R,泡沫塑料代号为S; 难粘塑料及薄膜(氟塑料、聚乙烯、聚丙烯等)代号为T;生物体组织骨骼及齿质材料代号为U;其他代号为V。

4、胶水状态:无溶剂液体代号为1;2有机溶剂液体代号为2;3水基液体代号为3,4膏状、糊状代号为4,5粉状、粒状、块状代号为5;6片状、膜状、网状、带状代号为6;7丝状、条状、棒状代号为7。

5、其它胶粘剂: (不常用到):金属结构胶、聚合物结构胶、光敏密封结构胶、其它复合型结构胶

热固性高分子胶:环氧树脂胶、聚氨酯(PU)胶、氨基树脂胶、酚醛树脂胶、丙烯酸树脂胶、呋喃树脂胶、间笨二酚-甲醛树脂胶、二甲笨-甲醛树脂胶、不饱和聚酯胶、复合型树脂胶、聚酰亚胺胶、脲醛树脂胶、其它高分子胶

密封胶粘剂:室温硫化硅橡胶、环氧树脂密封胶、聚氨酯密封胶、不饱和聚酯类、丙烯酸酯类、密封腻子、氯丁橡胶类密封胶、弹性体密封胶、液体密封垫料、聚硫橡胶密封胶、其它密封胶

热熔胶:热熔胶条、胶粒、胶粉、EVA热熔胶、橡胶热熔胶、聚丙烯、聚酯、聚酰胺、聚胺酯热熔胶、苯乙烯类热熔胶、新型热熔胶、聚乙烯及乙烯共聚物热熔胶、其他热熔胶

水基胶粘剂:丙烯酸乳液、醋酸乙烯基乳液、聚乙烯醇缩醛胶、乳液胶、其它水基胶

压敏胶(不干胶):胶水、胶粘带、无溶剂压敏胶、溶剂压敏胶、固化压敏胶、橡胶压敏胶、丙烯酸酯压敏胶、其它压敏胶

溶剂型胶:树脂溶液胶、橡胶溶液胶、其它溶剂胶

无机胶粘剂:热熔无机胶、自然干无机胶、化学反应无机胶、水硬无机胶、其它无机胶

热塑性高分子胶粘剂:固体高分子胶、溶液高分子胶、乳液高分子胶、单体高分子胶、其它热塑性高分子胶

天然胶粘剂:蛋白质胶、碳水化合物胶粘剂、其他天然胶

橡胶粘合剂:硅橡胶粘合剂、氯丁橡胶粘合剂、丁腈橡胶粘合剂、改性天然橡胶粘合剂、氯磺化聚乙烯粘合剂、聚硫橡胶粘合剂羧基橡胶粘合剂、聚异丁烯、丁基橡胶粘合剂、其它橡胶粘合剂

耐高温胶:有机硅胶、无机胶、高温模具树脂胶、金属高温粘合剂、其它耐高温胶

聚合物胶粘剂:丁腈聚合物胶、聚硫橡胶粘合剂、聚氯乙烯胶粘剂、聚丁二烯胶、过氯乙烯胶粘剂、其它聚合物胶

修补剂:金属修补剂、高温修补剂、紧急修补剂、耐磨修补剂、耐腐蚀修补剂、塑胶修补剂、其它修补剂

医用胶、纸品用胶、导磁胶、防磁胶、防火胶、防淬火胶、防淬裂胶、动物胶、植物胶、矿物胶、食品级胶粘剂、其它胶水。

胶水(胶粘剂)粘接の简介

0ae9ebaa-4861-11ed-b116-dac502259ad0.png

0b007a3c-4861-11ed-b116-dac502259ad0.png

0b0bd990-4861-11ed-b116-dac502259ad0.png

0b1c1aee-4861-11ed-b116-dac502259ad0.png

0b24cfcc-4861-11ed-b116-dac502259ad0.png

0b5d9852-4861-11ed-b116-dac502259ad0.png

0b69a656-4861-11ed-b116-dac502259ad0.png

0b870f70-4861-11ed-b116-dac502259ad0.png

0b959c7a-4861-11ed-b116-dac502259ad0.png

0ba5e968-4861-11ed-b116-dac502259ad0.png

0bb1ae9c-4861-11ed-b116-dac502259ad0.png

0bc1afea-4861-11ed-b116-dac502259ad0.png

0bd5fbb2-4861-11ed-b116-dac502259ad0.png

0beefeaa-4861-11ed-b116-dac502259ad0.png

0c02d196-4861-11ed-b116-dac502259ad0.png

0c2565a8-4861-11ed-b116-dac502259ad0.png

0c2ec300-4861-11ed-b116-dac502259ad0.png

0c3e2cbe-4861-11ed-b116-dac502259ad0.png

0c4ef314-4861-11ed-b116-dac502259ad0.png

0c7d5628-4861-11ed-b116-dac502259ad0.png

0c96e4e4-4861-11ed-b116-dac502259ad0.png

常用胶粘剂的固化形式

为了便于胶粘剂对被粘物面的浸润,胶粘剂在粘接之前要制成液态或使之变成液态,粘接后,只有变成固态才具有强度。通过适当方法使胶层由液态变成固态的过程称为胶粘剂的固化。而不同的胶粘剂的固化形式则是不同的,常用胶粘剂的固化形式有以下几种:

1、 溶液型胶粘剂的固化:溶液型胶强剂固化过程的实质是随着溶剂的挥发。溶液浓度不断增大,最后达到一定的强度。溶液胶的固化速度决定于溶剂的挥发速度,还受环境温度、湿度、被粘物的致密程度与含水量、接触面大小等因素的影响。配制溶液胶时应选样特定溶剂改组成混合溶剂以调节固化速度。选用易持发的溶剂,易影响结晶料的结晶速度与程度,甚至造成胶层结皮而降低粘接强度,此外快速挥发造成的粘接处降温凝水对粘接强度也是不利的。选用的溶剂挥发太慢,固化时间长,效率低,还可能造成胶层中溶剂滞留,对粘接不利。

2、 乳液型胶粘剂的固化:水乳液型胶粘剂是聚合物胶体在水中的分散体,为一种相对稳定体系。当乳液中的水分逐渐渗透到被粘物中并挥发时,其浓度就会逐渐增大,从而因表面张力的作用使胶粒凝聚而固化。环境温度对乳液的凝聚影响很大,温度足够高时乳液能凝聚成连续的膜,温度太低或低于最低成膜温度(该温度通常比玻璃化温度略低一点)时不能形成连续的膜,此时胶膜呈白色,强度根差。不同聚合物乳液的最低成膜温度是不同的,因此在使用该类胶粘剂时一定要使环境温度高于其最低成膜温度,否则粘接效果不好。

3 、热熔胶的固化:热熔胶的固化是一种简单的热传递过程,即加热熔化涂胶粘合,冷却即可固化。固化过程受环境温度影响很大,环境温度低,固化快。为了使热熔胶液能允分湿润被粘物,使用时必须严格控制熔融温度和晾置时间,对于粘料具结晶性的热熔胶尤应重视,否则将因冷却过头使粘料结晶不完全而降低粘接强度。

4 、增塑糊型胶粘剂的固化:增塑糊是高分子化合物在增塑剂中的一种不稳定分散体系,其固化基本上是高分子化合物溶解在增塑剂中的过程。这种糊在常温下行一定的稳定性。在加热时(一般在150~209℃)高分子化合物的增塑剂能迅速互溶而完全凝胶化,提高温度有利于高分子链运动,有利于形成均匀致密的粘接层。但温度过高会引起聚合物分解。

5、反应型胶粘剂的固化:反应型胶粘剂都存在着活性基团,与同化剂、引发剂和其他物理条件的作用下,粘料发生聚合交联等化学反应而固化。按固化介式反应型胶粘剂可分为固化剂固化型、催化剂固化型与引发剂固化型等几种类型。至于光敏固化、辐射同化等胶的固化机制一般属于以上类型中。

二步固化胶水双固化胶水双重固化方式の定义

二步固化

分两步固化:预固化,本固化。

双固化

有两种固化方式,比如:可以加热或UV或常温等。

0d3cab72-4861-11ed-b116-dac502259ad0.png

双重固化

需要两种固化方式才能完全固化,比如:先UV后常温,或先UV后加热。

0d47c1e2-4861-11ed-b116-dac502259ad0.png

半导体芯片类封装胶水の粘接原理

粘接理论

粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。

1.1 吸附理论:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶黏剂分子与被粘物表面分子的作用过程有两个过程:第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利于布朗运动的加强。第二阶段是吸附力的产生。当胶黏剂与被粘物分子间的距离达到10-5Å 时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。胶黏剂的极性太高, 有时候会严重妨碍湿润过程的进行而降低粘接力。

1.2 化学键形成理论:化学键理论认为胶黏剂与被粘物分子之间除相互作用力外,有时还有化学键产生,学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化条件,所以不可能做到使胶黏剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。

1.3 扩散理论:两种聚合物在具有相容性的前提下,当它们相互紧密接触时,由于分子的本身或其连段通过热运动引起的扩散作用。这种扩散作用是穿越胶黏剂、被粘物的界面交织进行的。扩散的结果导致界面的消失和过渡区的产生。粘接体系借助扩散理论不能解释聚合物材料与金属、玻璃或其他硬体胶粘,因为聚合物很难向这类材料扩散。在粘接体系中,适当降低胶黏剂的分子量有助于提高扩散系数,改善粘接性能。不同的分子结构形态聚合物分子链排列堆集的紧密程度不同,其扩散行为有显著不同。由于聚合物的扩散作用还受到两聚合物接触时间、粘接温度等作用因素的影响。两聚合物相互粘接时,粘接温度越高,时间越长,其扩散作用也越强,由扩散作用导致的粘接力就越高。

1.4 静电理论:当胶黏剂和被粘物体系是一种电子的接受体 -供给体的组合形式时,电子会从供给体(如金属)转移到接受体(如聚合物),在界面区两侧形成了双电层从而产生了静电引力。在干燥环境中从金属表面快速剥离粘接胶层时,可用仪器或肉眼观察到放电的光、声现象,证实了静电作用的存在。但静电作用仅存在于能够形成双电层的粘接体系,因此不具有普遍性。此外,有些学者指出:双电层中的电荷密度必须达到1021电子/厘米2时,静电吸引力才能对胶接强度产生较明显的影响。而双电层栖移电荷产生密度的最大值只有 1019电子/厘米2(有的认为只有1010-1011 电子/厘米2)。因此,静电力虽然确实存在于某些特殊的粘接体系,但决不是起主导作用的因素。

1.5机械作用力理论:从物理化学观点看,机械作用并不是产生粘接力的因素,而是增加粘接效果的一种方法。胶黏剂渗透到被粘物表面的缝隙或凹凸之处,固化后在界面区产生了啮合力,这些情况类似钉子与木材的接合或树根植入泥土的作用。机械连接力的本质是摩擦力。在粘合多孔材料、纸张、织物等时,机构连接力是很重要的,但对某些坚实而光滑的表面,这种作用并不显著。

影响粘接强度の因素

除了湿润,吸附过程、静电作用及扩散作用的过程外,还有很多因素对粘接强度产生影响。

2.1 表面粗糙度及表面处理:被粘物表面的粗糙程度是产生机械粘接力的源泉。机械粘接力是通过加强湿润及吸附作用而得到的。被粘物表面增加粗糙度等于增加其表面积。液体在粗糙表面的接触角有别于在光滑表面的接触角。试验证明,有粘接体系呈良好湿润状态的前提下,糙化增大了实际面积,有利于粘接强度的提高。如果被粘物呈“毛羽”状态,可显著提高粘接强度。当粘接剂良好的浸润被粘材料表面,其接触角表面的粗糙化有利于提高胶粘剂液体对表面的浸润程度,增加了胶粘剂与被粘材料的接触点密度,从而有利于提高粘接强度;当胶粘剂对被粘材料浸润不良即时,表面粗糙化就不利于粘接强度的提高。粘接前的表面处理是粘接成功的关键,其目的是能获得牢固耐久的接头。

2.2 界面层的强弱:弱界面层的产生是由于被粘物,胶黏剂,环境或它们共同作用的结果,当被粘物,胶粘剂及环境中的低分子物或杂质通过渗析、吸附及聚集过程,在部分或全部界面内产生了这些低分子物的富集区,这就是弱界面层。粘接接头在外力作用下的破坏过程必然发生于弱界面层。这就是出现粘接界面破坏并且粘接力严重下降的原因。

2.3 内应力:粘接体系存在的内应力一般有两个来源,一是胶层在固化过程中因体积收缩面产生的收缩应力。二是由于胶层与被粘物的膨胀系数不同,在受热或冷却时产生的热应力。1)收缩应力当胶黏剂固化时,因挥发,冷却和化学反应而体积发生收缩,引起收缩应力。当收缩力超过黏附力时,表观粘接强度就要显著下降。此外,粘接端部或胶黏剂的空隙周围应力分布不均匀也产生应力集中,增加了裂口出现的可能。有结晶性的胶黏剂在固化时,因洁晶而使体积收缩较大也造成接头的内应力,如在其中加入一定量能结晶或改变结晶大小的橡胶态物质。那么就可以减小内应力。2)热应力:在高温下,熔融的树脂冷却固化会产生体积收缩,在界面上由于粘接的约束而产生内应力。在分子链间有滑移的可能性时,则产生的内应力消失。影响热应力的主要因素有热膨胀系数、室温和时间的温差以及弹性差量。为了缓和因膨胀系数差而引起的热应力,应使胶黏剂的热膨胀系数接近于被粘物的热膨胀系数,可添加该种材料的粉末,或其他材料的纤维或粉末进行调整;可以通过加入各种橡胶及增塑剂,还可以改变固化工艺,如采用逐步升温、随炉冷却等方法。

2.4 环境的作用:被粘物表面主要是受周围介质的污染。例如被粘物表面有油迹时,由于油层的表面张力低于胶黏剂的表面张力,故油层比胶黏剂更容易湿润被粘物的表面,并生成一个不易清除的弱界面层,它的存在大大降低了胶黏剂对被粘物表面的亲和力。周围环境中,水分的作用更具普遍性。金属、玻璃、陶瓷等高表面能材料的表面对水的吸附力很强,某些被粘物对水产生化学吸附要加热到1000℃以上才能去除去。极性表面对水的吸附力比一般胶黏剂强,吸附水分不能被胶黏剂解吸。水分或其他低分子物对胶黏剂本身还有渗透、腐蚀和膨胀作用,这些作用均会减低胶黏剂的粘结力。

2.5 渗透及迁移:受环境气氛的作用,已粘接的接头常常被渗进一些其他低分子。例如,接头在潮湿环境或水下,水分子渗透入胶层;聚合物胶层在有机溶剂中,溶剂分子渗透入聚合物中。低分子的透入首先使胶层变形,然后进入胶层于被粘物界面使胶层强度降低,从而导致粘接的破坏。渗透不仅从胶层边沿开始,对于多孔性被粘物,低分子物可以从被粘物的空隙、毛细管或裂缝中渗透到被粘物中,进而浸入到界面上,使接头出现缺陷乃至破坏。渗透不仅会导致接头的物理性能下降,而且由于低分子物的渗透使界面发生化学变化,生成不利于粘接的锈蚀区,使粘接完全失效。2.6 压力及胶层厚度:在粘接时,向粘接面施加压力,使粘接剂更容易充满被粘体表面的坑洞,甚至流入深孔和毛细管中,减少粘接缺陷。对于黏度较小的胶黏剂,加压时会过度地流淌,造成缺胶。因此应待黏度较大时再施加压力,也促使被粘体表面上的气体逸出,减少粘接区的气孔。对于较稠的或固体的胶黏剂,在粘接时施加压力是必不可少的手段。在这种情况下,常常需要适当地升高温度,以降低胶黏剂的稠度或使胶黏剂液化。

粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。

半导体芯片类封装胶水の常见检测项目

粘度/留变度/触变

通常是0.5RPM/5.0RPM/10RRPM/20RPM,测试设备为普通粘度仪和流变仪,后者测试更准确是趋势。

0f37aa12-4861-11ed-b116-dac502259ad0.png0f5685ea-4861-11ed-b116-dac502259ad0.jpg

粒径检测

通常有Hegman和ADM两种测试方法。

0f628174-4861-11ed-b116-dac502259ad0.jpg

外观测试

目镜观察,胶水是否均匀,有无大颗粒异物等不良现象。

0f70e0fc-4861-11ed-b116-dac502259ad0.jpg

粘接力

测试条件:
1. 不同尺寸芯片(1*1 2*2 3*3mm等)
2. 不同粘接面(Ag/Au/Cu/PPF/PC等)
3. 不同测试条件(25C/260C/PB)

0f7c17ec-4861-11ed-b116-dac502259ad0.jpg

剥离力

剥离力(Lap shear):主要是结构粘接。

0f875f1c-4861-11ed-b116-dac502259ad0.jpg

体积电阻

0f9321ee-4861-11ed-b116-dac502259ad0.jpg

剥离力离子含量测试(Na/K/Br等)

0fa48a74-4861-11ed-b116-dac502259ad0.jpg

硬度/密度/PH值等

1)所谓硬度,就是材料抵抗更硬物压入其表面的能力。根据试验方法和适应范围的不同,硬度单位可分为布氏硬度、维氏硬度、洛氏硬度、显微维氏硬度等许多种,不同的单位有不同的测试方法,适用于不同特性的材料或场合。硬度测试是检测材料性能的重要指标之一,也是最快速最经济的试验方法之一。之所以能成为力学性能试验的常用方法, 是因为硬度测试能反映出材料在化学成分、组织结构和处理工艺上的差异,常被作为监督手段应用于各行各业。

2)密度测试仪是测定影像密度的仪器,也是测定感光特性的仪器之一。

中文名称:密度计英文名称:densitometer

定义1:测定影像密度的仪器,也是测定感光特性的仪器之一。

应用学科:测绘学(一级学科);摄影测量与遥感学(二级学科)

定义2:测量物质密度的仪器。由于密度和比重之间有一定关系,因此密度计也可以作为比重计。密度计按其用途分为液体密度计、气体密度计、固体密度计等。

应用学科:机械工程(一级学科);分析仪器(二级学科);物性分析仪器-物性分析仪器仪器和附件(三级学科)。

3)pH值指酸碱度,以水的pH值7为中性,当pH<7的时候呈酸性,当pH>7时候呈碱性。pH测定仪由传感器和二次表两部分组成。可配三复合或两复合电极,以满足各种使用场所。配上纯水和超纯水电极,可适用于电导率小于3μs/cm的水质(如化学补给水、饱和蒸气、凝结水等)的pH值测量。

10150632-4861-11ed-b116-dac502259ad0.png

103a3b8c-4861-11ed-b116-dac502259ad0.png

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 检测
    +关注

    关注

    5

    文章

    4493

    浏览量

    91531
收藏 人收藏

    评论

    相关推荐

    齐力半导体先进封装项目一期工厂启用

    近日,齐力半导体先进封装项目(一期)工厂在浙江省绍兴市柯桥区正式投入使用。该项目总投资额高达30亿元,占地面积80亩,旨在打造国内领先的半导体
    的头像 发表于 12-03 13:00 336次阅读

    半导体封装技术的类型和区别

    半导体封装技术是将半导体集成电路芯片用特定的外壳进行封装,以保护芯片、增强导热性能,并实现
    的头像 发表于 10-18 18:06 1210次阅读

    led封装半导体封装的区别

    1. 引言 随着电子技术的快速发展,半导体器件在各个领域的应用越来越广泛。为了保护半导体芯片免受物理损伤、化学腐蚀和环境影响,封装技术应运而生。LED
    的头像 发表于 10-17 09:09 779次阅读

    PCB半导体封装板:半导体产业的坚实基石

    PCB半导体封装板在半导体产业中具有极其重要的地位。它是连接半导体芯片与外部电路的关键桥梁,为芯片
    的头像 发表于 09-10 17:40 606次阅读

    半导体封装材料全解析:分类、应用与发展趋势!

    在快速发展的半导体行业中,封装技术作为连接芯片与外部世界的桥梁,扮演着至关重要的角色。半导体封装材料作为
    的头像 发表于 09-10 10:13 2655次阅读
    <b class='flag-5'>半导体</b><b class='flag-5'>封装</b>材料全解析:分类、应用与发展趋势!

    功率半导体封装方式有哪些

    功率半导体封装方式多种多样,这些封装方式不仅保护了功率半导体芯片,还提供了电气和机械连接,确保了器件的稳定性和可靠性。以下是对功率
    的头像 发表于 07-24 11:17 1232次阅读

    10亿元!连橙时代半导体芯片封装项目在长沙签约!

    人工智能产业创新与周期向上共振,半导体迎来了新一轮的发展机遇。据了解,此次签约的连橙时代项目拟投资10亿元,建设半导体存储芯片、模组的研发中心、
    的头像 发表于 07-09 14:20 465次阅读
    10亿元!连橙时代<b class='flag-5'>半导体</b><b class='flag-5'>芯片</b><b class='flag-5'>封装</b><b class='flag-5'>项目</b>在长沙签约!

    昕感科技6英寸硅基半导体芯片项目预计年底全面通线

    江苏昕感科技在半导体芯片制造领域又迈出了重要的一步。由该公司投资建设的6英寸硅基半导体芯片项目,预计将在今年年底全面通线,年产能将达到100
    的头像 发表于 06-26 10:49 1927次阅读

    用于半导体封装保护的环氧胶水

    用于半导体封装保护的环氧胶水是一种非常关键的材料,因其具有以下优势而广泛应用于该领域:高强度与高硬度:环氧胶水固化后能提供卓越的机械强度和硬度,有助于保护
    的头像 发表于 06-06 12:20 601次阅读
    用于<b class='flag-5'>半导体</b><b class='flag-5'>封装</b>保护的环氧<b class='flag-5'>胶水</b>

    容泰半导体集成电路芯片封装项目竣工投产

    近日,容泰半导体高新智造产业园正式启航,其标志性的“集成电路芯片封装项目已顺利竣工并投产。这座规模宏大的产业园,厂房占地面积达到33888平方米,总建筑面积更是高达40772.09
    的头像 发表于 05-31 10:08 606次阅读

    固定芯片用什么胶水比较好?

    固定芯片用什么胶水比较好?芯片粘接固定胶在电子封装领域是比较常见的,芯片安装在基板上,点胶固定的
    的头像 发表于 05-10 10:08 1369次阅读
    固定<b class='flag-5'>芯片</b>用什么<b class='flag-5'>胶水</b>比较好?

    柳鑫实业总部大楼及半导体封装新材料项目奠基仪式

    预期项目竣工后,将极大推进半导体封装核心材料产业化进程,打破国外技术壁垒与高端材料依赖进口局面,确保我国先进半导体关键材料供应链安全无忧。
    的头像 发表于 03-26 09:42 820次阅读

    什么是芯片胶水?它的作用是什么?

    什么是芯片胶水芯片胶水是电子领域关键的材料,一种用于电子主板上芯片封装
    的头像 发表于 03-07 14:01 1066次阅读
    什么是<b class='flag-5'>芯片</b><b class='flag-5'>胶水</b>?它的作用是什么?

    半导体芯片封装工艺介绍

    半导体芯片在作为产品发布之前要经过测试以筛选出有缺陷的产品。每个芯片必须通过的 “封装”工艺才能成为完美的半导体产品。
    的头像 发表于 01-17 10:28 1080次阅读
    <b class='flag-5'>半导体</b><b class='flag-5'>芯片</b><b class='flag-5'>封装</b>工艺介绍

    嘉创半导体芯片封装测试项目冲刺投产

    位于嘉鱼县电子信息产业园的嘉创半导体芯片封装测试项目1号厂房预计明年2月封顶,而后同步开始建设DFN、QFN生产线,预计5月份进行新产品的导入和可靠性验证,8月份计划转量产,同步扩建生
    的头像 发表于 01-08 09:56 761次阅读