0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

学技术 | 氮化镓(GaN)与硅(Si)的MOS开关比较

大大通 2022-12-09 14:41 次阅读

由于宽能隙功率元件的优异切换性能,近几年已经渐渐被商用化。常见的问题,如:究竟宽能隙元件对于系统的功率密度与效率的提升帮助有多少?原先所使用的以硅为基础的元件在更复杂的拓扑与控制机制,是否需要付出更大的成本?本文会以适配器(Adaptor)的应用来做说明。

氮化镓(GaN)是横向结构的功率元件,其具有小于硅(Si)的十分之一以下的闸极电荷(Qg)与输出电荷(Qoss),且没有逆向回复电流(Irr)的问题。因此很适合被设计于高功率密度的电源适配器,并在所有负载范围操作,都能达到零电压切换,可有效降低开关的切换损失。

e197709c-7754-11ed-b116-dac502259ad0.png

图2超接面Si与GaN元件的关键属性比较(Rds(on)=100mΩ)

元件特性:

当氮化镓元件与硅功率元件比较时,超接面Si元件(SuperJunction)显然是目前业界最主要的选择。检视当前最新的技术,超接面元件已经问世将近20年,经多个世代的演进,可以同时达到低导通电阻,以及低杂散电容,所以元件可以做快速地切换。

e1adf1a0-7754-11ed-b116-dac502259ad0.png

图3超接面元件与增强型模式氮化晶体管的输出电容(Coss)特性

e1d3aa8a-7754-11ed-b116-dac502259ad0.png

图4储存在输出电容的能量(Eoss)

即使氮化镓元件的输出电容在低压时具有较小的值,但是实际储存在输出电容的能量值却相当接近于超接面元件。这个能量在硬切换的每一个周期,会变成热而散掉,所以氮化镓的真正价值是在于柔性切换应用,因其具有逆向回复损失(Reverse recovery)为零的特性,以及Qoss比较小之优势。

e20375bc-7754-11ed-b116-dac502259ad0.png

图5 Qoss和电压的比较,左图为增强型模式氮化元件,右图为超接面元件

驱动线路:

一般闸极驱动线路如图6(a)所示,闸极导通与关断瞬间之正与负电流以及稳态电流如下。

e228894c-7754-11ed-b116-dac502259ad0.png

另外,Ion电流是由Ron电阻所决定,而稳态电流ISS则是取决于RSS,如图6(b)所示。其中,VN看似消失了,但其实是不需要,因为Con会将闸极驱动位准做位移而形成负电位。

e247ba2e-7754-11ed-b116-dac502259ad0.png

图6闸极驱动线路(a)、简化之驱动线路(b)、闸极电荷特性(c)、闸极电流(d)

实际应用:

这里使用一个以非对称PWM反驰式(Flyback)拓扑的65W适配器为测试平台。如图7所示,非对称PWM Flyback拓扑的原理,是利用激磁电流来帮助一次侧开关达到零电压切换,二次侧同整达到零电流切换,以求最高的转换效率。电路构架如图8所示。

e2742870-7754-11ed-b116-dac502259ad0.png

图7非对称PWM Flyback之65W USB-PD适配器

e29fac02-7754-11ed-b116-dac502259ad0.png

图8具有同步整流的非对称PWM Flyback


e2c6d142-7754-11ed-b116-dac502259ad0.png

图9非对称PWM Flyback典型波型

蓝色(LC谐振电流);红色(激磁电流);黄色(次级测电流)

这个适配器支持USB-PD功能,提供多组不同输出电压,从5V/3A到20V/3.25A,操作频率范围为100kHz~220kHz,取决于输入与输出电压,并且搭配使用500V/140mΩ的超接面元件,最高效率可达94.8%,当Vin为90V时,满载效率则为93%,整体来说,对于系统效率在满载和所有的输入电压范围可以提高约0.4%,整体效率如图8所示。

e2ecf624-7754-11ed-b116-dac502259ad0.png

图10红色曲线为超接面元件500V/140mΩ的满载效率,蓝色曲线为氮化元件600V/190mΩ的满载效率,Vo=20V

结论:

本文介绍了氮化镓元件之特性,并且列举氮化镓元件于适配器上的应用示例。根据实际的测试结果,当应用于柔性切换拓扑时,氮化镓元件是会比超接面元件更具有出色的效率表现。这是由于氮化镓元件的Qoss大幅降低,能够以较低的激磁电流来达到零电压切换,因此变压器和功率元件的导通损失(Conduction-loss)可以被降低。另外,较小的闸极电荷Qg也同时降低了驱动损失,而较小的Coss,则可降低关断时的切换损失(Switching-loss)。逆向回复损失(Reverse recovery)为零的特性也能提升切换稳定度。

藉由专属的驱动IC,可快速导通及关断GaN元件。且在关断的同时可保持闸极电位为零,避免开关误导通也可降低dead-time造成的损失。并且使信号隔离达到安全的绝缘标准。因此要想提高功率密度,使用氮化镓元件是必须的,只要转换器件的效率提升,所产生的热也会相对减少,散热片就可以缩小,自然就能有效缩减体积。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOS
    MOS
    +关注

    关注

    32

    文章

    1269

    浏览量

    93719
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1935

    浏览量

    73343
收藏 人收藏

    评论

    相关推荐

    碳化硅 (SiC) 与氮化GaN)应用 | 氮化硼高导热绝缘片

    SiC和GaN被称为“宽带隙半导体”(WBG)。由于使用的生产工艺,WBG设备显示出以下优点:1.宽带隙半导体氮化GaN)和碳化硅(SiC)在带隙和击穿场方面相对相似。
    的头像 发表于 09-16 08:02 666次阅读
    碳化硅 (SiC) 与<b class='flag-5'>氮化</b><b class='flag-5'>镓</b> (<b class='flag-5'>GaN</b>)应用  | <b class='flag-5'>氮化</b>硼高导热绝缘片

    氮化GaN)的最新技术进展

    本文要点氮化是一种晶体半导体,能够承受更高的电压。氮化器件的开关速度更快、热导率更高、导通电阻更低且击穿强度更高。
    的头像 发表于 07-06 08:13 842次阅读
    <b class='flag-5'>氮化</b><b class='flag-5'>镓</b>(<b class='flag-5'>GaN</b>)的最新<b class='flag-5'>技术</b>进展

    未来TOLL&amp;TOLT封装氮化功率器件助力超高效率钛金能效技术平台

    珠海未来科技有限公司是行业领先的高压氮化功率器件高新技术企业,致力于第三代半导体氮化
    的头像 发表于 04-10 18:08 1359次阅读
    <b class='flag-5'>镓</b>未来TOLL&amp;TOLT封装<b class='flag-5'>氮化</b><b class='flag-5'>镓</b>功率器件助力超高效率钛金能效<b class='flag-5'>技术</b>平台

    碳化物和氮化的晶体结构

    相比之下,氮化在自然中以闪锌矿(一种锌和铁的硫化物)的形式存在,在这种分布稀少的情况下,提纯生产极其困难。与SiC相比,氮化在射频电子
    的头像 发表于 03-01 14:29 799次阅读
    <b class='flag-5'>硅</b>碳化物和<b class='flag-5'>氮化</b><b class='flag-5'>镓</b>的晶体结构

    CGHV96050F1卫星通信氮化高电子迁移率晶体管CREE

    CGHV96050F1是款碳化硅(SiC)基材上的氮化(GaN)高电子迁移率晶体管(HEMT)。与其它同类产品相比,这些GaN内部搭配CGHV96050F1具有卓越的功率附带效率。与
    发表于 01-19 09:27

    氮化芯片和芯片区别

    氮化芯片和芯片是两种不同材料制成的半导体芯片,它们在性能、应用领域和制备工艺等方面都有明显的差异。本文将从多个方面详细比较氮化
    的头像 发表于 01-10 10:08 2082次阅读

    氮化mos管型号有哪些

    应用领域具有很大的潜力。 以下是一些常见的氮化MOS管型号: EPC2001:EPC2001是一种高性能非晶氮化
    的头像 发表于 01-10 09:32 2236次阅读

    氮化MOS管有寄生二极管吗

    氮化MOS管(GaN MOSFET)是一种基于氮化材料的金属氧化物半导体场效应管。它结合了
    的头像 发表于 01-10 09:30 1571次阅读

    氮化mos管驱动方法

    氮化GaNMOS管是一种新型的功率器件,它具有高电压、高开关速度和低导通电阻等优点,逐渐被广泛应用于功率电子领域。为了充分发挥
    的头像 发表于 01-10 09:29 2812次阅读

    氮化芯片的应用及比较分析

    对目前市场上的几种主要氮化芯片进行比较分析,帮助读者了解不同型号芯片的特点和适用场景。 一、氮化芯片的基本原理
    的头像 发表于 01-10 09:25 1829次阅读

    氮化功率器件结构和原理

    晶体管)结构。GaN HEMT由以下主要部分组成: 衬底:氮化功率器件的衬底采用高热导率的材料,如氮化硅(Si3N4),以提高器件的热扩散
    的头像 发表于 01-09 18:06 3220次阅读

    氮化技术的用处是什么

    氮化技术GaN技术)是一种基于氮化材料的半导体
    的头像 发表于 01-09 18:06 1880次阅读

    氮化mos管的优缺点有哪些

    氮化GaNMOS管是一种基于氮化材料的金属-氧化物-半导体场效应管(MOSFET)。它具
    的头像 发表于 01-09 17:26 6265次阅读

    氮化mos管驱动芯片有哪些

    、射频和光电子等领域,能够提供高效、高性能的功率转换和信号放大功能。 GaN MOS管驱动芯片具有以下特点: 高功率密度:与传统基材料相比,氮化
    的头像 发表于 12-27 14:43 2039次阅读

    氮化开关管的四个电极是什么

    来了解一下氮化开关管的基本结构。它由氮化GaN)和铝
    的头像 发表于 12-27 14:39 1161次阅读