0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

贞光科技:一文解读车规级碳化硅

贞光科技 2023-01-04 09:54 次阅读

贞光科技深耕汽车电子工业及轨道交通领域十余年,为客户提供车规MCU、车规电容、车规电阻、车规晶振、车规电感、车规连接器等车规级产品和汽车电子行业解决方案,成立于2008年的贞光科技是三星、VIKING、紫光芯能、基美、国巨、泰科、3PEAK思瑞浦等国内外40余家原厂的授权代理商。获取更多方案或产品信息可联系我们。

800V架构是全级别车型实现快充的主流选择。对于电池端,快充实质上是提升各电芯所在支路的充电电流,而随着单车 带电量超100kWh以上的车型持续推出,电芯数量增加,若仍继续维持400V母线电压规格,电芯并联数量增加,导致母线电流增加,对铜线规格、热管理带来巨大挑战。因此需要改变电池包内电芯串并联结构,减少并联而增加串联,方能 在提升支路电流的同时维持母线电流在合理水平。由于串联数量增加,母线端电压将提升。而100kWh电池包实现4C快充所要求的母线电压即为800V左右。为了兼容全级别车型快充功能,800V电气架构成为实现快充的主流选择。


整车: 会战高端化,800V车桩并举。2019年豪车品牌保时捷推出全球首款800V车型Taycan 。2020年比亚迪汉采用了 800V架构,2021年上海车展发布的e平台3.0亦搭载800V架构。随后华为、吉利、广汽、小鹏、岚图等Tier1和整车厂/品 牌推出了车桩两端的解决方案,以保障快充使用体验。
未来两年高端化是整车厂主战场,军备竞赛开启。补能 时间是电动车面临的核心短板之一,升级800V结构有利于实现快充,在短期内形成对中低端车型的差异化竞争力。长期 看快充对于中低端车型亦是刚需,800V架构升级具备长期趋势。
零部件与元器件:SiC和负极受益最大,其他部件平滑升级。从目前400V升级至800V ,变化最大的零部件和元器件主要是功率半导体和电池负极。其中SiC基功率半导体由于耐压高、损耗低、开关频率高等优异性能,预计将全面替代Si基功率半导体。
由于快充瓶颈在于负极,如要将目前的1C倍充电率提升至2C,再提升至4C,主流技术包括石墨包覆/掺杂硬碳、硅碳负极。其余部件则需要重新选型,提升耐压等级,但整体来看成本变化平滑。短期来看高压方案比目前方案整 车成本增加2%左右,长期看有望低于目前成本,为整车厂推广建立了良好基础。 零部件与元器件:SiC和负极受益最大,其他部件平滑升级
400V->800V哪些零部件和元器件需要升级?

v2-217d930ebb69df09a38cd6fb3646bba1_1440w.webp


电控
800V下SiC性能优异,替代Si基功率半导体趋势明确:

  • SiC基功率半导体相比Si基具备更高耐压等级和开关损耗,以Si-IGBT为例,450V下其耐压为650V,若汽车电气架构升级至800V,考虑开关电压开关过载等因素,对应功率半导体耐压等级需达1200V,而高电压下Si-IGBT的开关/导通损耗急剧升高,面临成本上升而能效下降的问题。

  • 800V下SiC的耐压、开关频率、损耗表现优异,是800V趋势下最大受益元器件。

v2-73e9e877db38ec819e5bc150b854e76c_1440w.webp


薄膜电容提升耐压等级,短期内单车价值提升:

  • 薄膜电容的作用是作为直流支撑电容器,从DC-link端吸收高脉冲电流,保护功率半导体。一般一个功率半导体配一个薄膜电容,新能源车上主要用于电机控制器、OBC上,若多电机车型,薄膜电容用量亦会随之增加。另外,在直流快充桩上亦需要一个薄膜电容。

  • 目前薄膜电容ASP为200元,800V趋势下,薄膜电容的ASP需提升约20%。另外短期看,800V会在高端车率先应用,高端车一般采用多电驱配置,提升薄膜电容用量。

v2-2c7bc0a99409dd35771f5d9bf61edc2f_1440w.webp


电池
负极快充性能要求提升。动力电池快充性能的掣肘在于负极:

  • 一方面石墨材料的层状结构,导致锂离子只能从端面进入,导致离子传输路径长

  • 另一方面石墨电极电位低,高倍率快充下石墨电极极化大,电位容易降到0V以下而析锂。


解决方法主要有两类:

  • 石墨改性:表面包覆、混合无定型碳,无定型碳内部为高度无序的碳层结构,可以实现Li+的快速嵌入。

  • 硅负极:理论容量高(4200mAh/g,远大于碳材料的372mAh/g),适合快充的本征原因是嵌锂电位高——析锂风险小——可以容忍更大的充电电流。

v2-1fb7b8064f1d228689a223540328d8c6_1440w.webp


电机
轴承防腐蚀、绝缘要求增加。轴电压的产生:

  • 电机控制器供电为变频电源,含有高次谐波分量,逆变器、定子绕组、机壳形成回路,产生感应电压,称为共模电压,在此回路上产生高频电流。由于电磁感应原理,电机轴两端形成感应电压,成为轴电压,一般来说无法避免。

  • 转子、电机轴、轴承形成闭合回路,轴承滚珠与滚道内表面为点接触,若轴电压过高,容易击穿油膜后形成回路,轴电流出现导致轴承腐蚀;

  • 800V的逆变器应用SiC,导致电压变化频率高,轴电流增大,轴承防腐蚀要求增加;

  • 同时,由于电压/开关频率增加,800V电机内部的绝缘/EMC防护等级要求提升。

v2-4f06f78e8abf14df0081744936bb6f01_1440w.webp


高压直流继电器:高性能要求驱动附加值,单车价值量提升
性能升级,优势厂商优势明显:作为新能源车高压电流回路的桥梁,升压对连接器的可靠性、体积和电气性能的要求增加,其在机械性能、电气性能、环境性能三方面均将持续提升。
作为中高端产品,电动汽车高压连接器有较高的技术与工艺壁垒。传统燃油车的低压连接器被海外供应商垄断。电动车快速增长打开高压连接器新增量,技术变化要求快速响应,整车平台高压化将进一步提高行业壁垒,国产供应商迎来国产替代机遇。
数量增加,单车价值量有望提升:目前单辆电动车配置15-20个高压连接器,单价在100-250元之间,双电机或大功率驱动电机车型需求量更多。从400V增至800V后,高压连接器将重新选型,增加大功率快充接口及400V到800V的转化接口,带动高压连接器单车价值量上升。

v2-22627270a773c0b1a67fb66b24fb714a_1440w.webp


OBC/DCDC:主动元件升级,短期内受益升压增量
高电压对功率器件提出更高要求,将驱动OBC/DCDC成本短期内攀升:

  • 为满足800v高电压平台在体积、轻量、耐压、耐高温等方面带来的更为严苛的要求,OBC/DCDC等功率器件集成化趋势明显;

  • 同时,预计SiC碳化硅将借助耐高压、耐高温、开关损耗低等优势在功率器件领域进行广泛应用,驱动单车OBC/DCDC价值量提高约10%-20%。


800v高压平台有望为OBC/DCDC带来新增量:

  • 高压平台使车载充电机升级需求增加,为高压OBC提供增量;

  • 同时,为能够适配使用原有400v直流快充桩,搭载800v电压平台新车须配有额外DCDC转换器进行升压,进一步增加对DCDC的需求。

v2-f4b2592224d6f18bc12a09fd87ee0791_1440w.webp


软磁合金粉芯:升压模块提升用量需求
电感元件主要材料是由金属磁粉芯:

  • 800V体系升级,中短期为了适配现存的400V充电桩,需加装DCDC升压模块,独立升压模块需要额外的电感。单车用量从原来0.5kg提升至约2.7kg;

  • 插混车由于电池容量较小,电压无法通过串联做到400V,对升压DCDC需求更大。一般而言,纯电动/插混单车用量0.5/4kg。

v2-b705ace9b309613761eddd45d2da8df1_1440w.webp


充电桩:高压快充比低压大电流快充节省约5%成本
相同功率下,由于电流减小,电压由400v到800v仍不需要液冷,未来500A则需要增配液冷系统

v2-c66a563f8772990772c3d009ef4984e8_1440w.webp


400V-800V车端成本变动平滑,利好整车厂推广
车端成本来看,高压架构比低压架构成本+2%。

  • 电池端由于负极快充性能提升、BMS复杂程度提升等因素,成本+5%;

  • 从整车部件来看,高压架构在热管理、线缆辅料等部件成本变化小,优于低压高电流架构。

v2-9bf83e9176367ceb78af08cc173615dd_1440w.webp


800V受益板块单车价值量与产业链标的:

v2-bd57dd52acee32c4d1228c64f52cfb8a_1440w.webp

【免责声明】版权归原作者所有,本文仅用于技术分享与交流,文中观点不代表贞光科技立场,若有涉及版权等请联系删除。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 碳化硅
    +关注

    关注

    25

    文章

    2640

    浏览量

    48577
收藏 人收藏

    评论

    相关推荐

    基本半导体碳化硅MOSFET通过AEC-Q101认证

    近日,基本半导体自主研发的1200V 80mΩ碳化硅MOSFETAB2M080120H顺利通过AEC-Q101可靠性认证,产品性能和可靠性满足汽车电子元器件在极端环境下的严苛要求
    的头像 发表于 09-13 10:20 366次阅读
    基本半导体<b class='flag-5'>碳化硅</b>MOSFET通过AEC-Q101<b class='flag-5'>车</b><b class='flag-5'>规</b><b class='flag-5'>级</b>认证

    基本半导体碳化硅MOSFET通过认证,为汽车电子注入新动力

    近日,中国半导体行业的佼佼者——基本半导体公司,再次在科技领域迈出坚实步伐。该公司自主研发的1200V 80mΩ碳化硅MOSFET AB2M080120H成功通过了AEC-Q101
    的头像 发表于 06-26 17:58 759次阅读

    基本半导体携多款碳化硅新品精彩亮相2024 SNEC国际伏展

    产品,吸引逾50万专业观众参与。 基本半导体携2000V/1700V系列高压碳化硅MOSFET、第三代碳化硅MOSFET、工业碳化硅功率模块PcoreTM2 E1B、工业
    的头像 发表于 06-15 09:20 658次阅读
    基本半导体携多款<b class='flag-5'>碳化硅</b>新品精彩亮相2024 SNEC国际<b class='flag-5'>光</b>伏展

    #烧结银AS9386推力实验视频(碳化硅模组用烧结银) #人工智能

    碳化硅
    善仁(浙江)新材料科技有限公司
    发布于 :2024年05月11日 22:03:48

    碳化硅MOS在直流充电桩上的应用

    MOS碳化硅
    瑞森半导体
    发布于 :2024年04月19日 13:59:52

    SIC 碳化硅认识

    好,硬度大(莫氏硬度为9.5,仅次于世界上最硬的金刚石(10))、导热性能优良、高温抗氧化能力强等。由于天然含量甚少,碳化硅主要多为人造。 第三代半导体指的是SiC、GaN、ZnO、金刚石(C)、AlN等具有宽禁带(Eg>2
    的头像 发表于 04-01 10:09 694次阅读
    SIC <b class='flag-5'>碳化硅</b>认识

    碳化硅压敏电阻 - 氧化锌 MOV

    碳化硅压敏电阻由约90%的不同晶粒尺寸的碳化硅和10%的陶瓷粘合剂和添加剂制成。将原材料制成各种几何尺寸的压敏电阻,然后在特定的大气和环境条件下在高温下烧结。然后将层黄铜作为电触点喷上火焰。其他标准
    发表于 03-08 08:37

    了解SiC碳化硅MOSFET的应用及性能优势

    耐压,高可靠性。可以实现节能降耗,小体积,低重量,高功率密度等特性,在新能源汽车、伏发电、轨道交通、智能电网等领域具有明显优势。 . 碳化硅MOSFET常见封装TO247 碳化硅M
    的头像 发表于 02-21 18:24 1158次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b>了解SiC<b class='flag-5'>碳化硅</b>MOSFET的应用及性能优势

    碳化硅产业链图谱

    碳化硅MOSFET等功率器件,应用于新能源汽车、伏发电、轨道交通、智能电网、航空航天等领域;半绝缘型衬底可用于生长氮化镓外延片,制成耐高温、耐高频的HEMT 等微波射频器件,主要应用于5G 通讯、卫星、雷达等领域。 碳化硅
    的头像 发表于 01-17 17:55 493次阅读
    <b class='flag-5'>碳化硅</b>产业链图谱

    碳化硅特色工艺模块简介

    碳化硅(SiC)是种宽禁带半导体材料,具有高热导率、高击穿场强、高饱和电子漂移速率和高键合能等优点。由于这些优异的性能,碳化硅在电力电子、微波射频、光电子等领域具有广泛的应用前景。然而,由于
    的头像 发表于 01-11 17:33 679次阅读
    <b class='flag-5'>碳化硅</b>特色工艺模块简介

    碳化硅功率器件简介、优势和应用

    碳化硅(SiC)是种优良的宽禁带半导体材料,具有高击穿电场、高热导率、低介电常数等特点,因此在高温、高频、大功率应用领域具有显著优势。碳化硅功率器件是利用碳化硅材料制成的电力电子器件
    的头像 发表于 01-09 09:26 2496次阅读

    碳化硅的5大优势

    碳化硅(SiC),又名碳化硅,是种硅和碳化合物。其材料特性使SiC器件具有高阻断电压能力和低比导通电阻。
    的头像 发表于 12-12 09:47 1531次阅读
    <b class='flag-5'>碳化硅</b>的5大优势

    碳化硅是如何制造的?碳化硅的优点和应用

    碳化硅,又称SiC,是种由纯硅和纯碳组成的半导体基材。您可以将SiC与氮或磷掺杂以形成n型半导体,或将其与铍、硼、铝或镓掺杂以形成p型半导体。虽然碳化硅的品种和纯度很多,但半导体
    的头像 发表于 12-08 09:49 1500次阅读

    碳化硅器件介绍与仿真

    本推主要介碳化硅器件,想要入门碳化硅器件的同学可以学习了解。
    的头像 发表于 11-27 17:48 1448次阅读
    <b class='flag-5'>碳化硅</b>器件介绍与仿真