0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

强化学习的基础知识和6种基本算法解释

颖脉Imgtec 2023-01-05 14:54 次阅读

来源:DeepHub IMBA

强化学习的基础知识和概念简介(无模型、在线学习、离线强化学习等)

机器学习(ML)分为三个分支:监督学习、无监督学习和强化学习。

  • 监督学习(SL)关注在给定标记训练数据的情况下获得正确的输出
  • 无监督学习(UL):关注在没有预先存在的标签的情况下发现数据中的模式
  • 强化学习(RL)关注智能体在环境中如何采取行动以最大化累积奖励

通俗地说,强化学习类似于婴儿学习和发现世界,如果有奖励(正强化),婴儿可能会执行一个行动,如果有惩罚(负强化),婴儿就不太可能执行这个行动。这也是来自监督学习和非监督学习的强化学习之间的主要区别,后者从静态数据集学习,而前者从探索中学习。1d09d8ac-8c24-11ed-bcbd-dac502259ad0.png本文将涉及强化学习的术语和基本组成部分,以及不同类型的强化学习(无模型、基于模型、在线学习和离线学习)。本文最后用算法来说明不同类型的强化学习。

本文的公式基于Stuart J. Russell和Peter Norvig的教科书《Artificial Intelligence: A Modern Approach》(第四版),为了保持数学方程格式的一致性所以略有改动。


强化学习

在深入研究不同类型的强化学习和算法之前,我们应该熟悉强化学习的组成部分。

  • Agent:从环境中接收感知并执行操作的程序,被翻译成为智能体,但是我个人感觉代理更加恰当,因为它就是作为我们人在强化学习环境下的操作者,所以称为代理或者代理人更恰当
  • Environment:代理所在的真实或虚拟环境
  • State (S):代理当前在环境中所处的状态
  • Action (A):代理在给定状态下可以采取的动作
  • Reward (R):采取行动的奖励(依赖于行动),处于状态的奖励(依赖于状态),或在给定状态下采取行动的奖励(依赖于行动和状态)

在一个婴儿探索世界的例子中,婴儿(代理)在现实世界(环境)中,能够感到高兴或饥饿(状态)。因此,宝宝可以选择哭泣,吃或睡(动作),如果宝宝饿的时候吃了东西(奖励),宝宝就满足了(正奖励)。强化学习涉及探索,强化学习的输出是一个最优策略。策略描述了在每个状态下要采取的行动;类似于说明书。比如,政策可以是宝宝饿了就吃,否则,宝宝就该睡觉。这也与监督学习形成了对比,监督学习的输出只是一个单一的决策或预测,比策略更简单。

强化学习的目标是通过优化所采取的行动来最大化总累积奖励。和婴儿一样,我们不都想从生活中获得最大的累积利益吗?


马尔可夫决策过程(MDP)

由于强化学习涉及一系列最优行为,因此它被认为是一个连续的决策问题,可以使用马尔可夫决策过程建模。1d2e4e76-8c24-11ed-bcbd-dac502259ad0.png这里的状态(用S表示)被建模为圆圈,动作(用A表示)允许代理在状态之间转换。在上图2中,还有一个转换概率(用T表示),T(S11, A1, S12)是在状态S11采取A1动作后转换到状态S12的概率。我们可以认为动作A1是向右的动作A2是向下的。为了简单起见,我们假设转移概率为1,这样采取行动A1将确保向右移动,而采取行动A2将确保向下移动。参照图2,设目标为从状态S11开始,结束于状态S23,黄色状态为好(奖励+1),红色状态为坏(奖励-1),紫色为目标状态(奖励+100)。我们希望智能体了解到最佳的行动或路线是通过采取行动A2-A1-A1来走向下-右-右,并获得+1+1+1+100的总奖励。再进一步,利用金钱的时间价值,我们在奖励上应用折扣因子gamma,因为现在的奖励比以后的奖励更好。综上所述,从状态S11开始执行动作A2-A1-A1,预期效用的数学公式如下:

1d496292-8c24-11ed-bcbd-dac502259ad0.png

上面的例子是一个简单的例子,一般情况下都会有一些变化,比如,

  • 转移概率不可能是1,因为需要在行动中考虑不确定性因素,例如采取某些行动可能并不总是保证成功地向右或向下移动。因此,我们需要在这个不确定性上取一个期望值
  • 最优动作可能还不知道,因此一般的表示方式是将动作表示为来自状态的策略,用π(S)表示。
  • 奖励可能不是基于黄色/红色/紫色状态,而是基于前一个状态、行动和下一个状态的组合,用R(S1, π(S1), S2)表示。
  • 问题可能不需要4步就能解决,它可能需要无限多的步骤才能达到目标状态

考虑到这些变化,确定给定状态下策略π的期望效用U(s)的更一般的方程是这样的:

1d64c5dc-8c24-11ed-bcbd-dac502259ad0.png

用上图4的话来说,状态的预期效用是折现奖励的预期总和。所以一个状态的效用与其相邻状态的效用相关;假设选择了最优行动,状态的效用是转移的预期奖励加上下一个状态的折扣效用。这就是递归。在数学上使用下面的方程表示

1d8cc6a4-8c24-11ed-bcbd-dac502259ad0.png

上图5是著名的Bellman方程,它求解最大效用并推导出最优策略。最优策略是在考虑转移概率的情况下,对所有可能的下一个状态进行求和,使当前状态的最大效用加上下一个状态的折现效用。回到MDP问题中,图2的最优策略是,如果代理处于状态S11, S12或S13,代理应该通过采取动作A2向下移动,如果代理处于状态S21或S22,则代理应该通过采取动作A1向右移动。这里的最优策略是通过求解Bellman方程来执行获得最大当前和折现未来奖励的行动。

MDP一般用(S, A, T, R)表示,它们分别表示一组状态,动作,转移函数和奖励函数。MDP假设环境是完全可观察的,如果代理不知道它当前处于什么状态,我们将使用部分可观察的MDP (POMDP) 图5中的Bellman方程,可以使用值迭代或策略迭代来求解最优策略,这是一种将效用值从未来状态传递到当前状态的迭代方法。

强化学习类似于求解MDP,但现在转移概率和奖励函数是未知的,代理必须在训练期间执行动作来学习


无模型与基于模型的强化学习

上面提到的MDP示例是基于模型的强化学习。基于模型的强化学习具有转移概率T(s1, a, s2)和奖励函数R(s1, a, s2),它们是未知的,他们表示要解决的问题。基于模型的方法对仿真很有用。基于模型的强化学习的例子包括值迭代和策略迭代,因为它使用具有转移概率和奖励函数的MDP。无模型方法不需要知道或学习转移概率来解决问题。我们的代理直接学习策略。

无模型方法对于解决现实问题很有用。无模型强化学习的例子包括Q-learning 和策略搜索,因为它直接学习策略。


离线学习vs.在线学习

离线学习和在线学习又称为被动学习和主动学习。离线学习在离线(被动)学习中,通过学习效用函数来解决该问题。给定一个具有未知转移和奖励函数的固定策略,代理试图通过使用该策略执行一系列试验来学习效用函数。例如,在一辆自动驾驶汽车中,给定一张地图和一个要遵循的大致方向(固定策略),但控制出错(未知的转移概率-向前移动可能导致汽车稍微左转或右转)和未知的行驶时间(奖励函数未知-假设更快到达目的地会带来更多奖励),汽车可以重复运行以了解平均总行驶时间是多少(效用函数)。离线强化学习的例子包括值迭代和策略迭代,因为它使用使用效用函数的Bellman方程(图5)。其他的一些例子包括直接效用估计、自适应动态规划(Adaptive Dynamic Programming, ADP)和时间差分学习(Temporal-Difference Learning, TD),这些将在后面详细阐述。在线学习在线(主动)学习中,通过学习规划或决策来解决问题。对于基于模型的在线强化学习,有探索和使用的阶段。在使用阶段,代理的行为类似于离线学习,采用固定的策略并学习效用函数。在探索阶段,代理执行值迭代或策略迭代以更新策略。如果使用值迭代更新策略,则使用最大化效用/值的一步前瞻提取最佳行动。如果使用策略迭代更新策略,则可获得最优策略,并可按照建议执行操作。以自动驾驶汽车为例,在探索阶段,汽车可能会了解到在高速公路上行驶所花费的总时间更快,并选择向高速公路行驶,而不是简单地沿着大方向行驶(策略迭代)。在使用阶段,汽车按照更新的策略以更少的平均总时间(更高的效用)行驶。在线强化学习的例子包括Exploration、Q-Learning和SARSA,这些将在后面几节中详细阐述。当状态和动作太多以至于转换概率太多时,在线学习是首选。在线学习中探索和“边学边用”比在离线学习中一次学习所有内容更容易。但是由于探索中的试错法,在线学习也可能很耗时。需要说明的是:在线学习和基于策略的学习(以及基于策略的离线学习)是有区别的,前者指的是学习(策略可以更改或固定),后者指的是策略(一系列试验来自一个策略还是多个策略)。在本文的最后两部分中,我们将使用算法来解释策略启动和策略关闭。

在理解了不同类型的强化学习之后,让我们深入研究一下算法!


1、直接效用估计 Direct Utility Estimation

无模型的离线学习在直接效用估计中,代理使用固定策略执行一系列试验,并且状态的效用是从该状态开始的预期总奖励或预期奖励。以一辆自动驾驶汽车为例,如果汽车在一次试验中从网格 (1, 1) 开始时,未来的总奖励为 +100。在同一次试验中,汽车重新访问该网格,从该点开始的未来总奖励是+300。在另一项试验中,汽车从该网格开始,未来的总奖励为 +200。该网格的预期奖励将是所有试验和对该网格的所有访问的平均奖励,在本例中为 (100 + 300 + 200) / 3。优点:给定无限次试验,奖励的样本平均值将收敛到真实的预期奖励。

缺点:预期的奖励在每次试验结束时更新,这意味着代理在试验结束前什么都没有学到,导致直接效用估计收敛非常慢。


2、自适应动态规划 (ADP)

基于模型的离线学习在自适应动态规划 (ADP) 中,代理尝试通过经验学习转换和奖励函数。转换函数是通过计算从当前状态转换到下一个状态的次数来学习的,而奖励函数是在进入该状态时学习的。给定学习到的转换和奖励函数,我们可以解决MDP。以自动驾驶汽车为例,在给定状态下尝试向前移动 10 次,如果汽车最终向前移动 8 次并向左移动 2 次,我们了解到转换概率为 T(当前状态, 向前,前状态)= 0.8 和 T(当前状态,向前,左状态)= 0.2。优点:由于环境是完全可观察的,因此很容易通过简单的计数来学习转换模型。

缺点:性能受到代理学习转换模型的能力的限制。这将导致这个问题对于大状态空间来说是很麻烦的,因为学习转换模型需要太多的试验,并且在 MDP 中有太多的方程和未知数需要求解。


3、时间差分学习(TD Learning)

无模型的离线学习在时间差分学习中,代理学习效用函数并在每次转换后以学习率更新该函数。1da39b4a-8c24-11ed-bcbd-dac502259ad0.png这里的时间差分(temporal difference)是指连续状态之间的效用差异,并根据此误差信号更新效用函数,由学习率缩放,如上图6所示。学习率可以是一个固定的参数,也可以是对一个状态访问量增加的递减函数,这有助于效用函数的收敛。与直接效用估计在每次尝试后进行学习相比,TD学习在每次转换后进行学习,具有更高的效率。与ADP相比,TD学习不需要学习转换函数和奖励函数,使其计算效率更高,但也需要更长的收敛时间。ADP和TD学习是离线强化学习算法,但在线强化学习算法中也存在主动ADP和主动TD学习!


4、Exploration

基于模型的在线学习,主动ADPExploration 算法是一种主动ADP算法。与被动ADP算法类似,代理试图通过经验学习转换和奖励函数,但主动ADP算法将学习所有动作的结果,而不仅仅是固定的策略。它还有一个额外的函数,确定代理在现有策略之外采取行动的“好奇程度”。这个函数随着效用的增加而增加,随着经验的减少而减少。如果状态具有高效用,则探索函数倾向于更频繁地访问该状态。探索功能随着效用的增加而增加。如果状态之前没有被访问过或访问过足够多次,探索函数倾向于选择现有策略之外的动作。如果多次访问状态,则探索函数就不那么“好奇”了。由于好奇程度的降低,探索功能随着经验的增加而降低。优点:探索策略会快速收敛到零策略损失(最优策略)。

缺点:效用估计的收敛速度不如策略估计的快,因为代理不会频繁地出现低效用状态,因此不知道这些状态的确切效用。


5、Q-Learning

无模型的在线学习,主动TD学习Q-Learning 是一种主动的 TD 学习算法。图 6 中的更新规则保持不变,但现在状态的效用表示为使用 Q 函数的状态-动作对的效用,因此得名 Q-Learning。被动 TD 学习与主动 TD 学习的更新规则差异如下图 7 所示。

1db57b6c-8c24-11ed-bcbd-dac502259ad0.png

这种差异是由于被动RL都是用固定的策略,因此每个状态只会执行固定的操作,效用仅取决于状态。而在主动RL 中,策略会被更新并且效用现在取决于状态-动作对,因为每个状态可能会根据不同的策略执行不同的动作。Q-Learning 是 Off-Policy(无既定策略),这意味着目标或下一个状态的效用是使Q函数最大化(而不是下一个状态中可能的操作),我们就不需要下一个状态下的实际动作。优点:可以应用于复杂领域,因为它是无模型的,代理不需要学习或应用转换模型。

缺点:它不看到未来的情况,所以当奖励稀少时可能会遇到困难。与 ADP 相比,它学习策略的速度较慢,因为本地更新不能确保 Q 值的一致性。


6、SARSA

无模型的在线学习,主动TD学习SARSA是一种主动TD学习算法。算法名称SARSA源自算法的组件,即状态S、动作A、奖励R、(下一个)状态S和(下一个)动作A。这意味着SARSA算法在更新Q函数之前,要等待下一个状态下执行下一个动作。相比之下,Q-Learning是一种“SARS”算法,因为它不考虑下一个状态的动作。SARSA 算法知道在下一个状态下采取的动作,并且不需要在下一个状态下的所有可能动作上最大化 Q 函数。Q-Learning与SARSA的更新规则差异显示在下面的图8中。1dc8e40e-8c24-11ed-bcbd-dac502259ad0.pngSARSA 以“策略”或者当前正在运行的策略的下一个状态的效用的q函数为目标,这样就能够获得下一个状态下的实际动作。也就是说如果Q-Learning不探索其他操作并在下一个状态下遵循当前策略,则它与SARSA相同。优点:如果整个策略由另一个代理或程序控制,则适合使用策略,这样代理就不会脱离策略并尝试其他操作。

缺点:SARSA不如Q-Learning灵活,因为它不会脱离策略来进行探索。与 ADP 相比,它学习策略的速度较慢,因为本地更新无法确保与 Q 值的一致性。


总结

在本文中我们介绍了强化学习的基本概念,并且讨论了6种算法,并将其分为不同类型的强化学习。1ddb13c2-8c24-11ed-bcbd-dac502259ad0.png这6种算法是帮助形成对强化学习的基本理解的基本算法。还有更有效的强化学习算法,如深度Q网络(Deep Q Network, DQN)、深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)等算法,具有更实际的应用。

我一直觉得强化学习很有趣,因为它阐明了人类如何学习以及我们如何将这些知识传授给机器人(当然也包括其他应用,如自动驾驶汽车、国际象棋和Alpha Go等)。希望本文能够让你对强化学习有了更多的了解,并且知道了强化学习的不同类型,以及说明每种类型的强化学习的算法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8337

    浏览量

    132255
收藏 人收藏

    评论

    相关推荐

    品质管理基础知识

    品质管理基础知识
    的头像 发表于 11-01 11:08 219次阅读
    品质管理<b class='flag-5'>基础知识</b>

    Verilog HDL的基础知识

    本文继续介绍Verilog HDL基础知识,重点介绍赋值语句、阻塞与非阻塞、循环语句、同步与异步、函数与任务语法知识
    的头像 发表于 10-24 15:00 114次阅读
    Verilog HDL的<b class='flag-5'>基础知识</b>

    负载开关基础知识

    电子发烧友网站提供《负载开关基础知识.pdf》资料免费下载
    发表于 10-08 09:56 1次下载
    负载开关<b class='flag-5'>基础知识</b>

    谷歌AlphaChip强化学习工具发布,联发科天玑芯片率先采用

    近日,谷歌在芯片设计领域取得了重要突破,详细介绍了其用于芯片设计布局的强化学习方法,并将该模型命名为“AlphaChip”。据悉,AlphaChip有望显著加速芯片布局规划的设计流程,并帮助芯片在性能、功耗和面积方面实现更优表现。
    的头像 发表于 09-30 16:16 362次阅读

    全新的半导体基础知识

    )和HG结为重点,详细叙述了作者经过数年潜心研究后提出的完全能够解释得通的且合理可信的全新半导体基础知识,最后通过对常见半导体器件工作原理的解读,证实全新半导体基础知识的合理性和可信性。
    的头像 发表于 09-20 11:30 1043次阅读
    全新的半导体<b class='flag-5'>基础知识</b>

    通过强化学习策略进行特征选择

    更快更好地学习。我们的想法是找到最优数量的特征和最有意义的特征。在本文中,我们将介绍并实现一新的通过强化学习策略的特征选择。我们先讨论强化学习,尤其是马尔可夫决策
    的头像 发表于 06-05 08:27 299次阅读
    通过<b class='flag-5'>强化学习</b>策略进行特征选择

    哪有FPGA的verilog编程基础知识

    没接触过FPGA开发,那个verilog编程有什么入门基础知识学习的?
    发表于 04-29 23:09

    FPGA基础知识介绍

    电子发烧友网站提供《FPGA基础知识介绍.pdf》资料免费下载
    发表于 02-23 09:45 27次下载

    鸿蒙开发【设备开发基础知识

    鸿蒙开发基础知识讲解
    的头像 发表于 01-29 18:44 888次阅读
    鸿蒙开发【设备开发<b class='flag-5'>基础知识</b>】

    射频与微波基础知识

    射频与微波基础知识
    的头像 发表于 01-16 10:05 766次阅读
    射频与微波<b class='flag-5'>基础知识</b>

    电气技术基础知识

    电气技术基础知识
    的头像 发表于 12-14 09:11 1445次阅读
    电气技术<b class='flag-5'>基础知识</b>

    拆解大语言模型RLHF中的PPO算法

    由于本文以大语言模型 RLHF 的 PPO 算法为主,所以希望你在阅读前先弄明白大语言模型 RLHF 的前两步,即 SFT Model 和 Reward Model 的训练过程。另外因为本文不是纯讲强化学习的文章,所以我在叙述的时候不会假设你已经非常了解
    的头像 发表于 12-11 18:30 2000次阅读
    拆解大语言模型RLHF中的PPO<b class='flag-5'>算法</b>

    电子元器件的基础知识

    电子元器件的基础知识
    的头像 发表于 12-04 10:42 4845次阅读
    电子元器件的<b class='flag-5'>基础知识</b>

    SPI协议基础知识

    电子发烧友网站提供《SPI协议基础知识.pdf》资料免费下载
    发表于 11-16 10:32 1次下载
    SPI协议<b class='flag-5'>基础知识</b>

    电池的基础知识

    电子发烧友网站提供《电池的基础知识.doc》资料免费下载
    发表于 11-15 11:29 1次下载
    电池的<b class='flag-5'>基础知识</b>