0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

耐高温1800C耐水耐化学耐候耐腐蚀高硬度的聚硅氮烷树脂涂层

向欣电子 2023-01-12 10:42 次阅读

言:聚硅氮烷(PSZ)是一类主链以Si-N键为重复单元的无机聚合物。聚硅氮烷可分为有机聚硅氮烷(OPSZ)和过水聚硅氮烷(PHPS)两大类。由于其结构特殊,聚硅氮烷高温条件下可转化为SiCNO、SiCN或二氧化硅陶瓷等,固化后硬度可达8H以上。聚硅氮烷具有优异的耐腐蚀、抗氧化、耐辐射、耐高温性能,在航空航天、半导体、光伏电池、耐高温涂层、陶瓷材料、树脂材料等领域应用广泛。硅氮烷聚合物在高温条件下可转化为 SiCN,SiCNO 或者二氧化硅陶瓷,因而硅氮烷聚合物在耐高温涂层方面具有重要应用价值。

444a8bb0-9173-11ed-ad0d-dac502259ad0.png

44586b72-9173-11ed-ad0d-dac502259ad0.png

聚硅氮烷可分为有机聚硅氮烷(OPSZ)和过水聚硅氮烷(PHPS)两大类,聚硅氮烷于19世纪80年代被发现,由于制备工艺复杂,其于上市50年代才进入商业化发展阶段。聚硅氮烷合成方法包括氨解法、胺解法、肼解法、开环聚合法、脱氢耦合法等,随着研究不断深入,聚硅氮烷合成方法数量将增加。

聚氮硅烷是一种新型尖端材料,以聚氮硅烷为前驱体制备的陶瓷材料,具有耐超高温、超韧度、超薄、超耐腐蚀、超高强度等属性。近年来,随着工业技术发展,全球市场对陶瓷基材料需求不断释放,进而带动聚氮硅烷需求增长,预计2022-2026年,全球聚硅氮烷市场将保持以16.5%以上的年均复合增长率增长。

44959ba0-9173-11ed-ad0d-dac502259ad0.png

作为一种新型尖端材料,聚硅氮烷在航天航空、半导体、耐高温涂层、陶瓷材料等领域具有广阔应用前景,未来随着终端产业发展,聚硅氮烷市场将保持高速增长态势。

硅氮烷聚合物(别名:聚硅氮烷)

硅氮烷聚合物简介

45032b98-9173-11ed-ad0d-dac502259ad0.png

聚硅氮烷是一类主链以Si—N键为重复单元的无机聚合物。自1921年A. Stock等人首次报道采用氨气氨解氯硅烷制备聚硅氮烷以来,研究者对聚硅氮烷的研究已持续了近一个世纪。相比其类似聚合物—主链以Si—O链为重复单元的聚硅氧烷,聚硅氮烷的开发和应用逊色很多。其主要原因有两个:一是大部分聚硅氮烷相对活泼,与水、极性化合物、氧等具有较高的反应活性,因此保存和运输较困难;二是聚硅氮烷的制备方法尚不完善,并不能有效地对反应产物进行控制,反应产物复杂,摩尔质量偏低。尽管如此,经过近一个世纪的发展,已开发出商业化聚硅氮烷产品,如瑞士Clariant、日本Teon、英国AZ Electronic materials的全氢聚硅氮烷;美国KiON牌号为“ceraset”的聚脲硅氮烷、聚硅氮烷;另外,美国Dow Corning公司、德国Bayer也有部分聚硅氮烷的产品;在国内,中国科学院化学研究所开发出PSN系列聚硅氮烷。聚硅氮烷的成功商品化推动了其在各方面的应用研究,其中作为陶瓷前驱体的研究最为丰富。

45152cee-9173-11ed-ad0d-dac502259ad0.png

硅氮烷聚合物的发展

1)首先是20世纪20年代,研究者开始尝试合成硅氮烷环体和低聚物,并对其进行分类,在这方面 A.Stock 做出了开创性的工作,但这段时期聚硅氮烷发展缓慢。

(2)二战的爆发促使聚硅氧烷在50~60年代成功商业化,这大大激起了研究者对聚硅氧烷类似聚合物—聚硅氮烷的研究热情,这段时期研究者主要是采用类似制备聚硅氧烷的方法,如开环聚合来制备聚硅氮烷,并研究其主要性质,期望能够以聚合物的形式应用,但取得的进展极为有限。

(3)1976年,S. Yajima等成功地通过裂解聚硅烷得到 SiC 纤维,商品名为 Nicalon 的 SiC 纤维并得以应用。研究者将目光投向聚硅氮烷,期望通过设计合适分子结构的聚硅氮烷来制备Si3N4和Si-C-N纤维。因此研究者在这段时间,将研究重心主要放在了聚硅氮烷可纺性以及如何固化裂解之上。自此,聚硅氮烷作为陶瓷前驱体聚合物成为研究者的研究热点,聚合物前驱体法也成为了一种新型陶瓷制备方法。简而言之,即是通过在一定气氛下高温(一般在 1 000 ℃以上)裂解具有特定分子组成的聚合物来制备陶瓷产物的方法。

(4)20世纪90年代,R. Reidel研究小组通过向聚硅氮烷中引入 B 元素制得 Si-B-C-N 陶瓷,其耐温性达到2 200 ℃,这带动了研究者将目光投向改性聚硅氮烷,以制备功能型或者具有更高耐温性的 Si-C-N 陶瓷。随之,具有磁性的 Si-Fe-C-N 陶瓷、具有抗菌性能的Si-Ag-C-N陶瓷、具有良好抗结晶性能的Si-Zr-C-N陶瓷等相继通过改性聚硅氮烷而制备出来。

一直以来,聚硅氮烷主要用于 Si3N4或者 Si-C-N 陶瓷前驱体,因此大多数工作都集中在利用其高温热解转化形成陶瓷材料这一特点而拓展其应用,目前已扩展到了涂层、粘结剂、陶瓷基复合材料、陶瓷薄膜、微电子机械系统(MEMS)以及多孔陶瓷等领域。

4550a18e-9173-11ed-ad0d-dac502259ad0.png

457cc00c-9173-11ed-ad0d-dac502259ad0.png

硅氮烷聚合物的相关研究

聚硅氮烷作为陶瓷前驱体

通过裂解聚合物得到陶瓷材料的方法相比传统的无机粉末烧结法具有独特的优势,如:可利用聚合物的成型方式制备陶瓷材料,工艺性好;通过聚合物分子设计能得到化学组成和结构不同的陶瓷材料。

(1)用于制备陶瓷纤维

20世纪年代,聚合物前驱体制备SiC纤维的兴起激起研究者通过聚硅氮烷制备Si3N4、Si3N4/ SiC或SiCN纤维的兴趣。目前,研究者已对聚硅氮烷的可纺性、纺丝工艺、不熔化处理方式、裂解方法等有了较深刻的认识,但之前的研究集中在熔融纺丝上。采用液体聚硅氮烷制备纤维需要聚硅氮烷具有较高的黏度以便于纺丝;同时黏度又不可随温度变化太快,否则工作窗口太窄。

(2)用于制备块体陶瓷材料

采用聚合物前驱体法制备陶瓷材料具有独特的优势,然而这样得到的陶瓷却不尽完美:一方面,在裂解过程中,部分有机基团脱除,产生气体,使材料内部产生很多孔;另一方面,裂解过程中材料出现收缩,严重时会出现材料开裂、翘曲变形等情况。为此,研究者采用不同的方式,如热压/裂解、液相烧结、预裂解/粘合/裂解、压力浇铸 (pressure casting)等对聚硅氮烷进行固化裂解,从而得到缺陷相对较少的陶瓷材料。热压/裂解法是将聚硅氮烷固化物研磨成固体粉末,然后热压成型,再在惰性气氛中裂解,得到无定型SiCN陶瓷材料。

(3)用于制备陶瓷涂层

对于用有机聚硅氮烷制备陶瓷涂层的研究已取得了很多有意义的结果。F. Kerm[3]等人设计了一套对碳纤维表面进行涂层处理的中试装置,从纤维的表面处理、浸渍聚硅氮烷溶液、到涂层固化和裂解,可连续进行,实现了10 000 m碳纤维的连续化处理。在此工艺过程中,聚硅氮烷浓度非常重要,太低 (聚硅氮烷质量分数小于2 %)不能实现对纤维的 全面保护,太高(聚硅氮烷质量分数大于10% )则造成涂层碎裂。但聚硅氮烷处理陶瓷、金属表面时要求浓度较高 ( 聚硅氮烷质量分数20% ~ 60 % ),以掩盖基底表面较大的缺陷;在提拉 ( 浸涂)和旋涂工艺中,通常还会采取多次涂覆的方式。

(4)用于制备多孔陶瓷材料

多孔陶瓷在过滤、催化、隔热、吸附等方面具有的广泛应用,聚硅氮烷较多的改性方法和较好的成型能力使其可采取多样的成孔方式制备多孔SiCN陶瓷材料。

(5)用于制备陶瓷MEMS组件

(6)用于制备复合材料

聚硅氮烷作为树脂材料

聚硅氮烷本身虽然是一种聚合物树脂,但相比其作为陶瓷前驱体的研究而言,对其作为树脂的研究则较少。在这方面,中科院化学研究所做了一些尝试,包括直接采用聚硅氮烷作为树脂基体,以及用于改性烯丙基酚醛、环氧树脂、硅树脂等,取得了一系列有意义的结果。

459dc8ce-9173-11ed-ad0d-dac502259ad0.png

硅氮烷聚合物的应用

聚硅氮烷用于碳材料抗氧化

碳材料,如石墨、碳纤维,具有密度低、性能高、无蠕变、非氧化环境下耐超高温、耐疲劳性好、比热及导电性介于非金属和金属之间、热膨胀系数小、耐腐蚀性好等特点,是耐高温领域不可或缺的重要材料。但是碳材料的抗氧化性能较差,空气环境下温度达到 400 ℃以上就会出现失重、强度下降的现象。

对于碳纤维增强复合材料,氧化失重率达到2%~5%时,力学性能下降40%~50%,这严重限制其应用。因此,提高碳纤维的抗氧化性能至关重要。德国研究者将聚硅氮烷涂覆于碳纤维丝上,在室温条件下固化形成涂层。通过对纤维在马弗炉中的等温失重考核,发现涂层可有效提高碳纤维的氧化温度,使碳纤维的热稳定温度达到了750 ℃。他们进一步将聚硅氮烷涂覆于碳纤维粗纱上,并在200 ℃左右固化,发现涂层也可有效提高纤维的抗氧化性能和高温稳定性。

45b48014-9173-11ed-ad0d-dac502259ad0.png

聚硅氮烷用于金属高温防护

金属的高温防腐抗氧化一直以来是工业界和科研界的重要课题。由聚硅氮烷转化形成的SiO2或者SiCN具有出色的耐腐蚀性能,同时由于其结构中Si-N极性的特点,容易与金属基底结合,因而是良好的耐高温防腐涂层材料。目前已有采用聚硅氮烷为主要原料的商品化耐高温涂层材料,主要用于汽车和卡车等的排气管、活塞、热交换器等。

45d46604-9173-11ed-ad0d-dac502259ad0.png

聚硅氮烷用于高温封孔

通过无机烧结或者等离子喷涂方法制备陶瓷部件或者涂层时,材料总是具有一定的孔隙率,这会影响材料的气密性,从而影响其耐高温性能,所以有必要进行封孔处理。常用封孔剂分为有机封孔剂和无机封孔剂2种。有机封孔剂多为有机树脂,只能在低温起到密封作用,高温分解后则失去效果。无机胶粘剂一般是无机粉体和有机胶粘剂配合,其耐温性较有机封孔剂高,但是温度进一步升高,胶粘剂分解后,无机纳米颗粒之间的空隙又会造成封孔效果的下降。M. R. Mucalo等采用聚硅氮烷来涂覆氧化铝片,经高温裂解后在氧化铝表面形成Si3N4/Si2N2O涂层,通过扫描电子显微镜观察发现氧化铝致密度明显提高,且涂覆次数越多,致密度越高。

45e52bba-9173-11ed-ad0d-dac502259ad0.png

其他

由于聚硅氮烷良好的耐温性,当添加适当填料时,即可达到高温隔热的效果。如在聚硅氮烷中添加中空玻璃微珠,用喷涂的方式涂覆于复合材料表面,经200 ℃固化后,即可对复合材料起到良好的高温保护作用。

4601f4c0-9173-11ed-ad0d-dac502259ad0.png

4615c450-9173-11ed-ad0d-dac502259ad0.png

46258020-9173-11ed-ad0d-dac502259ad0.png

44959ba0-9173-11ed-ad0d-dac502259ad0.png

464542d4-9173-11ed-ad0d-dac502259ad0.png

耐高温1800C耐水耐化学耐候耐腐蚀高硬度の聚硅氮烷树脂涂层

中粘度100%固含量聚硅氮烷树脂介绍

46578a0c-9173-11ed-ad0d-dac502259ad0.png

产品特征

466fc536-9173-11ed-ad0d-dac502259ad0.png

应用领域

4680e19a-9173-11ed-ad0d-dac502259ad0.png

化学性能、固化性能

469b16fa-9173-11ed-ad0d-dac502259ad0.png

46b14614-9173-11ed-ad0d-dac502259ad0.png

46cacbd4-9173-11ed-ad0d-dac502259ad0.png

注意事项

46e0a986-9173-11ed-ad0d-dac502259ad0.png

46fe3fb4-9173-11ed-ad0d-dac502259ad0.png

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    334

    文章

    27026

    浏览量

    216366
  • 材料
    +关注

    关注

    3

    文章

    1190

    浏览量

    27232
收藏 人收藏

    评论

    相关推荐

    MEMS传感器封装胶水选择指南

    类型及特点环氧树脂封装胶特点:高强度、高硬度,提供优异的机械保护;良好的电绝缘性和耐化学腐蚀性。适用场景:适用于汽车传感器(如轮速传感器、转向角传感器)等需要高机械
    的头像 发表于 11-22 09:58 193次阅读
    MEMS传感器封装胶水选择指南

    耐高温1200℃纳米复合隔热片 | 保驾护航锂电池热失控材料

    复合隔热材料能够有效减少热量的传导和辐射,具有出色的隔热效果。这种材料在高温环境下能够保持稳定的隔热性能,有效阻隔热量的传递。轻质高强:该材料重量轻、硬度高,具有良
    的头像 发表于 11-21 01:01 75次阅读
    <b class='flag-5'>耐高温</b>1200℃纳米<b class='flag-5'>硅</b>复合隔热片 | 保驾护航锂电池热失控材料

    盐雾测试:评估金属材料耐腐蚀性能的重要手段

    盐雾测试是一种关键的环境测试方法,旨在通过模拟盐雾环境来评估产品或金属材料的耐腐蚀性能。依据GB/T 2423.17-2008/IEC 60068-2-11:1981标准,盐雾试验适用于比较相似结构
    的头像 发表于 11-07 16:20 223次阅读
    盐雾测试:评估金属材料<b class='flag-5'>耐腐蚀</b>性能的重要手段

    华林科纳PFA管在换热器中的应用

    PFA管,全称为全氟氧基乙烯(Perfluoroalkoxy)树脂管,是一种高性能的氟塑料管道,以其卓越的耐腐蚀性、耐高温性、电绝缘性和化学
    的头像 发表于 10-17 17:32 148次阅读

    耐高温网线最高可以接受多少度

    耐高温网线的最高可承受温度因材料、设计和应用场景的不同而有所差异。一般来说,普通网线的耐高温程度通常只能达到60℃左右,这是由于其多采用PVC等常规材料制成,这些材料的耐高温性能有限。 然而
    的头像 发表于 10-08 10:13 402次阅读

    环氧树脂电容和石蜡电容哪个绝缘性能好

    在环氧树脂电容和石蜡电容之间,环氧树脂电容通常具有更好的绝缘性能。 环氧树脂电容 的主要优点包括: 1、高介电强度 :环氧树脂具有较高的介电强度,能够在较高的电场下保持稳定的绝缘性能。
    的头像 发表于 08-06 14:28 508次阅读
    环氧<b class='flag-5'>树脂</b>电容和石蜡电容哪个绝缘性能好

    优化耐腐蚀材料测试:美能盐雾腐蚀试验箱的应用

    在探索材料在海洋性气候中的耐腐蚀性能时评估材料耐腐蚀性的关键工具之一是盐雾腐蚀试验。美能盐雾腐蚀试验箱凭借先进技术和严格遵循GB/T10587及ISO9227标准,为测试提供高效准确的
    的头像 发表于 07-03 08:33 217次阅读
    优化<b class='flag-5'>耐腐蚀</b>材料测试:美能盐雾<b class='flag-5'>腐蚀</b>试验箱的应用

    芯片环氧胶可以提供一定的盐雾耐腐蚀效果

    芯片环氧胶(或称为环氧树脂胶)在电子封装和保护应用中确实能提供一定的盐雾和耐腐蚀效果。环氧树脂因为其出色的粘接性能、机械强度以及良好的化学
    的头像 发表于 06-13 10:31 447次阅读
    芯片环氧胶可以提供一定的<b class='flag-5'>耐</b>盐雾<b class='flag-5'>耐腐蚀</b>效果

    什么是耐高温屏蔽网线

    耐高温屏蔽网线是一种特殊的电线电缆,主要用于在高温条件下保持稳定的信号传输和连接。其结构包括多股超细精绞无氧铜丝作为导体,以及高温材料作为绝缘层。屏蔽层采用镀锡铜丝纺织屏蔽,确保信号的稳定性和抗干扰
    的头像 发表于 05-21 10:12 834次阅读

    陶瓷与金属连接的艺术:半导体封装技术的新高度

    陶瓷和金属是两种在性质和应用上截然不同的材料。陶瓷以其高硬度、高耐磨性、耐高温耐腐蚀性以及良好的电绝缘性等特性而著称,而金属则以其良好的导电性、导热性、延展性和可塑性等特性被广泛应用。在许多应用中
    的头像 发表于 03-15 09:57 1278次阅读
    陶瓷与金属连接的艺术:半导体封装技术的新高度

    基于3D打印的氟化聚合物用于制备耐化学腐蚀的微流控芯片

    弹性体材料,尤其是聚二甲基硅氧烷(PDMS),对于微流控系统非常重要。
    的头像 发表于 02-22 09:16 899次阅读
    基于3D打印的氟化聚合物用于制备<b class='flag-5'>耐化学</b><b class='flag-5'>腐蚀</b>的微流控芯片

    耐腐蚀液位传感器有哪些

    在工业生产和流体处理过程中,液体的腐蚀性对设备的可靠性和使用寿命提出了严峻挑战。为了应对这一挑战,耐腐蚀液位传感器应运而生。这种传感器采用特殊的材质,具备出色的耐腐蚀性能,能够适应各种强腐蚀
    的头像 发表于 01-04 14:56 535次阅读
    <b class='flag-5'>耐腐蚀</b>液位传感器有哪些

    碳化硅SiC的高温氧化研究

    SiC材料具有优异的高温稳定性、耐腐蚀性、热导性能和机械强度等优势,因此受到广泛关注和应用。
    的头像 发表于 12-26 10:13 1366次阅读
    碳化硅SiC的<b class='flag-5'>高温</b>氧化研究

    什么是碳化硼陶瓷?碳化硼陶瓷的特点又有哪些?

    什么是碳化硼陶瓷?碳化硼陶瓷的特点又有哪些? 碳化硼陶瓷是一种具有高硬度、高熔点和耐高温特性的陶瓷材料,其化学公式为BC。它通常由块状或粉末状碳化硼制成,并通过高温烧结或热压缩工艺进行
    的头像 发表于 12-19 13:47 997次阅读

    从-269~1800℃的五大耐高温材料

    芳纶1313是一种具有特殊功能的纤维,最早由美国杜邦公司研发。这种纤维外观与普通的化纤相似,但却具有许多独特的特性。最突出的特点是其耐高温性非常出色,可以在220℃的高温下长期使用而不发生老化。
    的头像 发表于 11-29 16:11 2802次阅读
    从-269~<b class='flag-5'>1800</b>℃的五大<b class='flag-5'>耐高温</b>材料