0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习聚类的综述

颖脉Imgtec 2023-01-13 11:11 次阅读

作者:凯鲁嘎吉

来源:博客园


这篇文章对现有的深度聚类算法进行全面综述与总结。现有的深度聚类算法大都由聚类损失与网络损失两部分构成,博客从两个视角总结现有的深度聚类算法,即聚类模型与神经网络模型。

1. 什么是深度聚类?

经典聚类即数据通过各种表示学习技术以矢量化形式表示为特征。随着数据变得越来越复杂和复杂,浅层(传统)聚类方法已经无法处理高维数据类型。为了解决该问题,深度聚类的概念被提出,即联合优化表示学习和聚类。a93d5d88-9194-11ed-ad0d-dac502259ad0.png

2. 从两个视角看深度聚类

a94bb7f2-9194-11ed-ad0d-dac502259ad0.png

3. 从聚类模型看深度聚类

3.1 基于K-means的深度聚类

a95cb32c-9194-11ed-ad0d-dac502259ad0.png参考:聚类——K-means - 凯鲁嘎吉 - 博客园

3.2 基于谱聚类的深度聚类

a975ad32-9194-11ed-ad0d-dac502259ad0.png参考:多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning),关于“On the eigenvectors of p-Laplacian”目标函数的优化问题- 凯鲁嘎吉 - 博客园

3.3基于子空间聚类(Subspace Clustering, SC)的深度聚类

a9cad28a-9194-11ed-ad0d-dac502259ad0.png

参考:深度多视图子空间聚类,多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning),字典更新与 K-SVD - 凯鲁嘎吉 - 博客园

3.4基于高斯混合模型(Gaussian Mixture Model, GMM)的深度聚类

a9dfb4ac-9194-11ed-ad0d-dac502259ad0.png

参考:聚类——GMM,基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)- 凯鲁嘎吉 - 博客园

3.5基于互信息的深度聚类

a9f06a86-9194-11ed-ad0d-dac502259ad0.png

参考:COMPLETER: 基于对比预测的缺失视图聚类方法,Meta-RL——Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices - 凯鲁嘎吉 - 博客园

3.6 基于KL的深度聚类

aa0e7436-9194-11ed-ad0d-dac502259ad0.png

参考:Deep Clustering Algorithms ,关于“Unsupervised Deep Embedding for Clustering Analysis”的优化问题,结构深层聚类网络,具有协同训练的深度嵌入多视图聚类- 凯鲁嘎吉 -博客园

4.从神经网络模型看深度聚类

4.1基于自编码器(AutoEncoder, AE)的深度聚类

aa1ee104-9194-11ed-ad0d-dac502259ad0.png参考:Deep Clustering Algorithms - 凯鲁嘎吉 - 博客园 (DEC, IDEC, DFKM, DCEC)

4.2基于变分自编码器(Variational AutoEncoder, VAE)的深度聚类

aa300f4c-9194-11ed-ad0d-dac502259ad0.png

参考:变分推断与变分自编码器,变分深度嵌入(Variational Deep Embedding, VaDE),基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG),元学习——Meta-Amortized Variational Inference and Learning,RL——Deep Reinforcement Learning amidst Continual/Lifelong Structured Non-Stationarity - 凯鲁嘎吉 - 博客园

4.3基于生成对抗网络(Generative Adversarial Network, GAN)的深度聚类

aa4322f8-9194-11ed-ad0d-dac502259ad0.png参考:生成对抗网络(GAN与W-GAN),ClusterGAN: 生成对抗网络中的潜在空间聚类,双层优化问题:统一GAN,演员-评论员与元学习方法(Bilevel Optimization Problem unifies GAN, Actor-Critic, and Meta-Learning Methods)- 凯鲁嘎吉 - 博客园

4.4基于孪生网络(Siamese Neural Network)/对比学习(Contrastive Learning)的深度聚类

aa5373c4-9194-11ed-ad0d-dac502259ad0.png参考:从对比学习(Contrastive Learning)到对比聚类(Contrastive Clustering),COMPLETER: 基于对比预测的缺失视图聚类方法- 凯鲁嘎吉 - 博客园

4.5基于图神经网络(Graph Neural Network)的深度聚类

aa62cc0c-9194-11ed-ad0d-dac502259ad0.png

参考:结构深层聚类网络 - 凯鲁嘎吉 -博客园

参考文献

[1]第40期:基于深度神经网络的聚类算法——郭西风

[2]物以类聚人以群分:聚类分析的一些挑战和进展-凯鲁嘎吉-博客园

[3] A Survey of Deep Clustering Algorithms -凯鲁嘎吉-博客园

[4] Deep Clustering | Deep Learning Notes

[5]郭西风.基于深度神经网络的图像聚类算法研究[D].国防科技大学,2020.

作者:凯鲁嘎吉

出处:http://www.cnblogs.com/kailugaji/

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 深度学习
    +关注

    关注

    73

    文章

    5456

    浏览量

    120856
收藏 人收藏

    评论

    相关推荐

    Pytorch深度学习训练的方法

    掌握这 17 种方法,用最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 95次阅读
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>学习</b>训练的方法

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 253次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :深度
    的头像 发表于 10-23 15:25 253次阅读

    深度学习中的时间序列分类方法

    的发展,基于深度学习的TSC方法逐渐展现出其强大的自动特征提取和分类能力。本文将从多个角度对深度学习在时间序列分类中的应用进行综述,探讨常用
    的头像 发表于 07-09 15:54 594次阅读

    深度学习中的无监督学习方法综述

    应用中往往难以实现。因此,无监督学习深度学习中扮演着越来越重要的角色。本文旨在综述深度学习中的
    的头像 发表于 07-09 10:50 349次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。 深度
    的头像 发表于 07-05 09:47 716次阅读

    深度学习中的模型权重

    深度学习这一充满无限可能性的领域中,模型权重(Weights)作为其核心组成部分,扮演着至关重要的角色。它们不仅是模型学习的基石,更是模型智能的源泉。本文将从模型权重的定义、作用、优化、管理以及应用等多个方面,深入探讨
    的头像 发表于 07-04 11:49 710次阅读

    深度学习常用的Python库

    深度学习作为人工智能的一个重要分支,通过模拟人类大脑中的神经网络来解决复杂问题。Python作为一种流行的编程语言,凭借其简洁的语法和丰富的库支持,成为了深度学习研究和应用的首选工具。
    的头像 发表于 07-03 16:04 498次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器学习的范畴,但
    的头像 发表于 07-01 11:40 1069次阅读

    深度学习与度量学习融合的综述

    如今,机器学习的应用广泛,包括人脸识别、医疗诊断等,为复杂问题和大量数据提供解决方案。机器学习算法能基于数据产生成功的分类模型,但每个数据都有其问题,需定义区别特征进行正确分类。
    发表于 04-24 09:49 360次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>与度量<b class='flag-5'>学习</b>融合的<b class='flag-5'>综述</b>

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度学习技术,使得
    发表于 04-23 17:18 1204次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 563次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    什么是深度学习?机器学习深度学习的主要差异

    2016年AlphaGo 击败韩国围棋冠军李世石,在媒体报道中,曾多次提及“深度学习”这个概念。
    的头像 发表于 01-15 10:31 939次阅读
    什么是<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的主要差异

    GPU在深度学习中的应用与优势

    人工智能的飞速发展,深度学习作为其重要分支,正在推动着诸多领域的创新。在这个过程中,GPU扮演着不可或缺的角色。就像超级英雄电影中的主角一样,GPU在深度学习中拥有举足轻重的地位。那么
    的头像 发表于 12-06 08:27 1171次阅读
    GPU在<b class='flag-5'>深度</b><b class='flag-5'>学习</b>中的应用与优势

    深度学习在人工智能中的 8 种常见应用

    深度学习简介深度学习是人工智能(AI)的一个分支,它教神经网络学习和推理。近年来,它解决复杂问题并在各个领域提供尖端性能的能力引起了极大的兴
    的头像 发表于 12-01 08:27 3166次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>在人工智能中的 8 种常见应用