0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

HPC应用如何使用GPU加速计算

冬至子 来源:HPCLIB 作者:hpcer 2023-06-21 15:38 次阅读

GPU为什么能加速计算?

这需要从CPU和GPU的区别说起:

CPU(中央处理器)和GPU(图形处理器)是两种不同的处理器类型,主要的区别在于它们的设计目标和应用场景。详细分为以下几个方面:

  1. 设计目标:CPU是一种通用处理器,主要用于执行各种不同类型的计算任务,如操作系统的管理、文件处理、网络通信、应用程序的执行等。而GPU则是一种专用处理器,主要用于图形和图像处理,如3D游戏、视频编辑、计算机辅助设计等。
  2. 处理方式:CPU采用串行处理方式,即一次只能处理一个指令,需要经过多次的取指、解码、执行等步骤才能完成一个任务。而GPU采用并行处理方式,即同时处理多个指令,可以在同一时间内完成多个任务。
  3. 处理器核心:CPU通常拥有几个核心,每个核心可以处理一个任务,而GPU通常拥有数百个甚至数千个核心,这是因为图像上的每一个像素点都有被处理的需要,而且每个像素点处理的过程和方式都十分相似,GPU就是用很多简单的计算单元去完成大量的计算任务,能够同时处理大量的数据。
  4. 内存:CPU通常使用高速缓存和主存储器来存储数据,而GPU则通常使用显存来存储图像和图形数据,因为显存的读写速度更快,可以更快地处理图形和图像。

总结一下,就是一个核心同时只能处理一个任务,CPU的核数较少,通用性较强,而GPU则核数较多,但通用性不强,只能处理某些简单的计算。记得知乎上有个很好的比喻,CPU就像老教授,虽然啥都会算,但也要一个个的算。而GPU则类似组织了几千个小学生,尽管只能进行简单的计算,但是人多呀。

这里还涉及另外一个知识 就是串行计算和并行计算。

串行计算和并行计算是两种不同的计算模式,它们的区别在于任务处理的方式和计算资源的利用情况。

串行计算,就是使用单个处理器或核心处理所有的计算任务,按照固定的顺序一个一个的执行。适用于小规模、简单的计算任务,像我们常用的电脑软件,容易编写和管理,但任务比较多的情况,执行速度较慢,容易堵塞。就像我们电脑打开东西多了,就容易卡。

并行计算,则是将一个大型问题分解成多个小任务,同时在多个处理器或核心上并行执行任务。多个处理器或核心可以同时处理不同的任务,加速计算过程。适用于大规模、复杂的计算任务,通常需要使用并行编程技术来实现。虽然管理和编写比较复杂,但具有高效的计算能力。

另外,串行计算和并行计算还存在以下差异:

  • 数据传输:在并行计算中,不同处理器或核心之间需要进行数据传输和通信,而在串行计算中不存在这种问题。
  • 算法设计:并行计算需要设计适合并行计算的算法,而串行计算则可使用任何类型的算法。
  • 可伸缩性:并行计算支持更高的可伸缩性,可以扩展到更多的处理器或核心,从而处理更大规模的任务,而串行计算则存在物理限制。

现在,我们对CPU、GPU和计算方式有了一个基本的了解。接下来,进入第二个问题:

为什么要用GPU加速?

理论上,CPU和GPU都可以使用并行计算。为什么我们要用GPU加速呢?

相信你的心中已经有了答案,没错就是“成本”。如果使用同等核数的CPU并行计算的成本,无论是建设成本,还是功耗成本都将远超使用GPU。但是,也并不是所有的HPC计算应用都能用GPU加速计算的。

哪些应用适合用GPU加速计算?

GPU加速计算适合那些需要大量并行计算的应用程序,其中包括但不限于以下应用领域:

  • 深度学习神经网络是深度学习的基础,而GPU可以加速神经网络的训练和推理计算,提高模型的准确率和训练速度。
  • 计算机视觉:计算机视觉需要对图像或视频进行大量的特征提取、分类和识别等计算,这些计算可以通过GPU加速来提高处理速度和准确率。
  • 科学计算:科学计算需要对大规模数据进行高效的数值计算和仿真,GPU可以加速矩阵运算、FFT计算、流体力学模拟、分子动力学模拟等计算。
  • 密码学:密码学涉及到大量的加密和解密计算,其中一些计算可以通过GPU加速来提高加解密速度和安全性。

需要注意的是,不是所有的应用程序都适合使用GPU加速计算。GPU加速计算通常需要对代码进行特殊的优化和并行化处理,而且虽然GPU的运算速度相对于CPU的速度更快,但内存容量和计算能力相对较弱,因此在使用GPU加速计算时需要考虑到应用程序的特点和计算需求。以下是一些常见的可以使用GPU加速的计算应用:

  • 分子动力学模拟:AMBER、GROMACS、NAMD、LAMMPS等。
  • 计算流体力学:OpenFOAM、ANSYS Fluent、STAR-CCM+等。
  • 机器学习和深度学习:TensorFlow、PyTorch、Keras、Caffe等。
  • 计算结构力学:ABAQUS、Ansys、LS-DYNA等。
  • 量子化学计算:Gaussian、NWChem、ORCA、VASP等。

如何使用GPU加速计算?

CPU并行计算通过GPU加速来提高计算效率和性能。这种方法称为异构并行计算(Heterogeneous Parallel Computing)。

在异构并行计算中,CPU负责控制程序流程和部分计算任务,而GPU则负责大规模数据并行计算任务。具体实现上,需要使用一些编程框架和工具来完成,如CUDA、OpenCL等。这些工具提供了针对GPU的API接口,可以将需要加速的计算任务转移到GPU进行处理,从而加速计算过程。

HPC计算应用要支持GPU加速通常需要进行以下步骤:

  • 选择合适的GPU:首先需要选择一款合适的GPU,根据应用的需求选择GPU型号、内存大小等参数。通常,使用较新的GPU会获得更好的性能。
  • 编写GPU加速代码:针对应用程序,需要编写相应的GPU加速代码。通常,使用CUDA或OpenCL等并行计算框架可以简化GPU编程,并提供高效的GPU加速。
  • 优化GPU加速代码:为了获得最佳性能,需要对GPU加速代码进行优化。优化的方法包括调整线程块大小、优化内存访问模式、减少内存传输等。
  • 集成GPU加速代码:将GPU加速代码集成到应用程序中,并与原来的CPU代码进行对比测试,以确保GPU加速的正确性和性能提升。

最后集成在HPC系统中,通过集群调度器分配相应的GPU节点资源,配合应用的相关参数,实现计算任务的计算加速。

总体来说,CPU和GPU各有其擅长的领域。CPU适合处理各种类型的任务,具有通用性和容易编程的特点,并且在缓存系统方面有一定的优势;而GPU则适合处理大规模的数值计算任务,具有强大的并行计算能力和高效的内存带宽。因此,在选择并行计算方案时,需要根据具体应用场景和需求来选择适当的硬件和编程框架。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 存储器
    +关注

    关注

    38

    文章

    7484

    浏览量

    163776
  • HPC
    HPC
    +关注

    关注

    0

    文章

    315

    浏览量

    23756
  • 图形处理器
    +关注

    关注

    0

    文章

    198

    浏览量

    25541
  • 计算机视觉
    +关注

    关注

    8

    文章

    1698

    浏览量

    45984
  • 中央处理器
    +关注

    关注

    1

    文章

    124

    浏览量

    16519
收藏 人收藏

    评论

    相关推荐

    《CST Studio Suite 2024 GPU加速计算指南》

    许可证模型的加速令牌或SIMULIA统一许可证模型的SimUnit令牌或积分授权。 4. GPU计算的启用 - 交互式模拟:通过加速对话框启用,打开求解器对话框,点击“
    发表于 12-16 14:25

    GPU加速matlab程序

    最近遇到了一个加速matlab程序的问题,不知道如何利用GPU,以及使用GPU的先决条件,是不是GPU加速必须要用cuda,最重要的是只用G
    发表于 03-30 11:21

    NVIDIA CUDA Toolkit用于创建高性能GPU加速应用程序

    通过 CUDA Toolkit,您可以在 GPU 加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和 HPC 超级计算机上开发、优化和部署应用程序。
    的头像 发表于 03-10 10:15 2335次阅读

    利用英伟达ARM HPC开发套件开发下一代HPC应用程序

      英伟达 ARM HPC 开发工具包是第一个步骤,使 AR-HPC 生态系统 GPU 加速。 NVIDIA 致力于全面支持 Arm 的 HPC
    的头像 发表于 04-14 14:50 1496次阅读

    如何将高性能计算和科学计算应用软件更好的部署到GPU计算平台

    NVIDIA 与智东西公开课共同策划推出「GPU 加速高性能计算(HPC)经典应用在线研讨会」。研讨会将聚焦经典高性能计算和科学
    的头像 发表于 05-27 09:53 1557次阅读

    使用GPU加速RELION进行生物结构解析

    NVIDIA 与智东西公开课共同策划推出「GPU 加速高性能计算HPC)经典应用在线研讨会」。研讨会将聚焦经典高性能计算和科学
    的头像 发表于 06-22 10:06 1631次阅读

    FPGA与GPU计算存储加速对比

    为了提升计算基础设施的性能,并紧跟数据分析与 AI 不断攀升的需求,众多企业将硬件加速视为主要的解决方案。在大多数情况下,先进的可编程硬件(主要是指 GPU 和 FPGA)是加速的主要
    的头像 发表于 08-02 08:03 2232次阅读
    FPGA与<b class='flag-5'>GPU</b><b class='flag-5'>计算</b>存储<b class='flag-5'>加速</b>对比

    什么是HPC(高性能计算)?

    高性能计算 (High Performance Computing,又叫HPC、超级计算) 是指比传统计算机和服务器提供更高马力聚合计算能力
    的头像 发表于 11-01 11:47 2.8w次阅读

    HPC China 2022 | 相聚云端,NVIDIA 加速高性能计算分论坛邀请函

    HPC China 2022 大会 将于 12 月 12 日 - 15 日举办,今年,本次大会以全线上形式呈现。 14 日下午,NVIDIA 将携手英迈出席 加速高性能计算分论坛 。众多
    的头像 发表于 12-12 19:10 1046次阅读

    10 天加速 82 倍!西湖大学 GPU Hackathon 加速科研 HPC+AI 应用

    GPU Hackathon  是一个专门针对全球从事科学研究的应用程序开发者的 GPU 应用加速活动,目标是在 10 天的活动期间,将科研 HPC+AI 应用通过 OpenACC,Py
    的头像 发表于 01-17 01:10 708次阅读

    什么是HPC高性能计算

    高性能计算(HighPerformanceComputing,简称HPC),是指利用集群、网格、超算等计算机技术,通过合理地组织计算机资源以及运用适合的算法和程序,提高
    的头像 发表于 02-19 13:27 845次阅读
    什么是<b class='flag-5'>HPC</b>高性能<b class='flag-5'>计算</b>

    HPC计算前景

    高性能计算HPC)与云计算的结合,正逐步成为推动科技创新和产业升级的重要引擎。随着数据规模的不断扩大和计算需求的日益复杂,HPC
    的头像 发表于 10-16 10:17 228次阅读

    GPU加速计算平台是什么

    GPU加速计算平台,简而言之,是利用图形处理器(GPU)的强大并行计算能力来加速科学
    的头像 发表于 10-25 09:23 246次阅读

    计算HPC的关系

    尽管云计算HPC在架构、应用场景和成本效益等方面存在显著差异,但云计算HPC之间并非孤立存在,而是相互补充、协同发展的关系。下面,AI部落小编带您探讨云
    的头像 发表于 12-14 10:35 91次阅读

    计算HPC软件关键技术

    计算HPC软件关键技术涉及系统架构、处理器技术、操作系统、计算加速、网络技术以及软件优化等多个方面。下面,AI部落小编带您探讨云计算
    的头像 发表于 12-18 11:23 76次阅读